Spaces:
Running
Running
File size: 18,847 Bytes
60d1d13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
"""
ViettelPay Knowledge Base with Contextual Retrieval
This updated version:
- Uses ContextualWordProcessor for all document processing
- Integrates OpenAI for contextual enhancement
- Processes all doc/docx files from a parent folder
- Removes CSV processor dependency
"""
import os
import pickle
# import torch
from typing import List, Optional
from pathlib import Path
from openai import OpenAI
from langchain.schema import Document
from langchain.retrievers import EnsembleRetriever
from langchain_community.retrievers import BM25Retriever
from langchain_core.runnables import ConfigurableField
from langchain_cohere.rerank import CohereRerank
# Use newest import paths for langchain
try:
from langchain_chroma import Chroma
except ImportError:
from langchain_community.vectorstores import Chroma
# Use the new HuggingFaceEmbeddings from langchain-huggingface
try:
from langchain_huggingface import HuggingFaceEmbeddings
except ImportError:
from langchain_community.embeddings import HuggingFaceEmbeddings
from src.processor.contextual_word_processor import ContextualWordProcessor
from src.processor.text_utils import VietnameseTextProcessor
# Import configuration utility
from src.utils.config import get_cohere_api_key, get_openai_api_key, get_embedding_model
class ViettelKnowledgeBase:
"""ViettelPay knowledge base with contextual retrieval enhancement"""
def __init__(self, embedding_model: str = None):
"""
Initialize the knowledge base
Args:
embedding_model: Vietnamese embedding model to use
"""
embedding_model = embedding_model or get_embedding_model()
# Initialize Vietnamese text processor
self.text_processor = VietnameseTextProcessor()
# self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = "cpu"
print(f"[INFO] Using device: {self.device}")
# Initialize embeddings with GPU support and trust_remote_code
model_kwargs = {"device": self.device, "trust_remote_code": True}
self.embeddings = HuggingFaceEmbeddings(
model_name=embedding_model, model_kwargs=model_kwargs
)
# Initialize retrievers as None
self.chroma_retriever = None
self.bm25_retriever = None
self.ensemble_retriever = None
self.reranker = CohereRerank(
model="rerank-v3.5",
cohere_api_key=get_cohere_api_key(),
)
def build_knowledge_base(
self,
documents_folder: str,
persist_dir: str = "./knowledge_base",
reset: bool = True,
openai_api_key: Optional[str] = None,
) -> None:
"""
Build knowledge base from all Word documents in a folder
Args:
documents_folder: Path to folder containing doc/docx files
persist_dir: Directory to persist the knowledge base
reset: Whether to reset existing knowledge base
openai_api_key: OpenAI API key for contextual enhancement (optional)
Returns:
None. Use the search() method to perform searches.
"""
print(
"[INFO] Building ViettelPay knowledge base with contextual enhancement..."
)
# Initialize OpenAI client for contextual enhancement if API key provided
openai_client = None
if openai_api_key:
openai_client = OpenAI(api_key=openai_api_key)
print(f"[INFO] OpenAI client initialized for contextual enhancement")
elif get_openai_api_key():
api_key = get_openai_api_key()
openai_client = OpenAI(api_key=api_key)
print(f"[INFO] OpenAI client initialized from configuration")
else:
print(
f"[WARNING] No OpenAI API key provided. Contextual enhancement disabled."
)
# Initialize the contextual word processor with OpenAI client
word_processor = ContextualWordProcessor(llm_client=openai_client)
# Find all Word documents in the folder
word_files = self._find_word_documents(documents_folder)
if not word_files:
raise ValueError(f"No Word documents found in {documents_folder}")
print(f"[INFO] Found {len(word_files)} Word documents to process")
# Process all documents
all_documents = self._process_all_word_files(word_files, word_processor)
print(f"[INFO] Total documents processed: {len(all_documents)}")
# Create directories
os.makedirs(persist_dir, exist_ok=True)
chroma_dir = os.path.join(persist_dir, "chroma")
bm25_path = os.path.join(persist_dir, "bm25_retriever.pkl")
# Build ChromaDB retriever (uses contextualized content)
print("[INFO] Building ChromaDB retriever with contextualized content...")
self.chroma_retriever = self._build_chroma_retriever(
all_documents, chroma_dir, reset
)
# Build BM25 retriever (uses contextualized content with Vietnamese tokenization)
print("[INFO] Building BM25 retriever with Vietnamese tokenization...")
self.bm25_retriever = self._build_bm25_retriever(
all_documents, bm25_path, reset
)
# Create ensemble retriever with configurable top-k
print("[INFO] Creating ensemble retriever...")
self.ensemble_retriever = self._build_retriever(
self.bm25_retriever, self.chroma_retriever
)
print("[SUCCESS] Contextual knowledge base built successfully!")
print("[INFO] Use kb.search(query, top_k) to perform searches.")
def load_knowledge_base(self, persist_dir: str = "./knowledge_base") -> bool:
"""
Load existing knowledge base from disk and rebuild BM25 from ChromaDB documents
Args:
persist_dir: Directory where the knowledge base is stored
Returns:
bool: True if loaded successfully, False otherwise
"""
print("[INFO] Loading knowledge base from disk...")
chroma_dir = os.path.join(persist_dir, "chroma")
try:
# Load ChromaDB
if os.path.exists(chroma_dir):
vectorstore = Chroma(
persist_directory=chroma_dir, embedding_function=self.embeddings
)
self.chroma_retriever = vectorstore.as_retriever(search_kwargs={"k": 5})
print("[SUCCESS] ChromaDB loaded")
else:
print("[ERROR] ChromaDB not found")
return False
# Extract all documents from ChromaDB to rebuild BM25
print("[INFO] Extracting documents from ChromaDB to rebuild BM25...")
try:
# Get all documents and metadata from ChromaDB
all_docs = vectorstore.get(include=["documents", "metadatas"])
documents = all_docs["documents"]
metadatas = all_docs["metadatas"]
# Reconstruct Document objects
doc_objects = []
for i, (doc_content, metadata) in enumerate(zip(documents, metadatas)):
# Handle case where metadata might be None
if metadata is None:
metadata = {}
doc_obj = Document(page_content=doc_content, metadata=metadata)
doc_objects.append(doc_obj)
print(f"[INFO] Extracted {len(doc_objects)} documents from ChromaDB")
# Rebuild BM25 retriever using existing method
self.bm25_retriever = self._build_bm25_retriever(
documents=doc_objects,
bm25_path=None, # Not used anymore
reset=False, # Not relevant for rebuilding
)
except Exception as e:
print(f"[ERROR] Error rebuilding BM25 from ChromaDB: {e}")
return False
# Create ensemble retriever with configurable top-k
self.ensemble_retriever = self._build_retriever(
self.bm25_retriever, self.chroma_retriever
)
print("[SUCCESS] Knowledge base loaded successfully!")
print("[INFO] Use kb.search(query, top_k) to perform searches.")
return True
except Exception as e:
print(f"[ERROR] Error loading knowledge base: {e}")
return False
def search(self, query: str, top_k: int = 10) -> List[Document]:
"""
Main search method using ensemble retriever with configurable top-k
Args:
query: Search query
top_k: Number of documents to return from each retriever (default: 5)
Returns:
List of retrieved documents
"""
if not self.ensemble_retriever:
raise ValueError(
"Knowledge base not loaded. Call build_knowledge_base() or load_knowledge_base() first."
)
# Build config based on top_k parameter
config = {
"configurable": {
"bm25_k": top_k * 5,
"chroma_search_kwargs": {"k": top_k * 5},
}
}
results = self.ensemble_retriever.invoke(query, config=config)
reranked_results = self.reranker.rerank(results, query, top_n=top_k)
final_results = []
for rerank_item in reranked_results:
# Get the original document using the index
original_doc = results[rerank_item["index"]]
# Create a new document with the relevance score added to metadata
reranked_doc = Document(
page_content=original_doc.page_content,
metadata={
**original_doc.metadata,
"relevance_score": rerank_item["relevance_score"],
},
)
final_results.append(reranked_doc)
return final_results
def get_stats(self) -> dict:
"""Get statistics about the knowledge base"""
stats = {}
if self.chroma_retriever:
try:
vectorstore = self.chroma_retriever.vectorstore
collection = vectorstore._collection
stats["chroma_documents"] = collection.count()
except:
stats["chroma_documents"] = "Unknown"
if self.bm25_retriever:
try:
stats["bm25_documents"] = len(self.bm25_retriever.docs)
except:
stats["bm25_documents"] = "Unknown"
stats["ensemble_available"] = self.ensemble_retriever is not None
stats["device"] = self.device
stats["vietnamese_tokenizer"] = "Vietnamese BM25 tokenizer (underthesea)"
return stats
def _find_word_documents(self, folder_path: str) -> List[str]:
"""
Find all Word documents (.doc, .docx) in the given folder
Args:
folder_path: Path to the folder to search
Returns:
List of full paths to Word documents
"""
word_files = []
folder = Path(folder_path)
if not folder.exists():
raise FileNotFoundError(f"Folder not found: {folder_path}")
# Search for Word documents
for pattern in ["*.doc", "*.docx"]:
word_files.extend(folder.glob(pattern))
# Convert to string paths and sort for consistent processing order
word_files = [str(f) for f in word_files]
word_files.sort()
print(f"[INFO] Found Word documents: {[Path(f).name for f in word_files]}")
return word_files
def _process_all_word_files(
self, word_files: List[str], word_processor: ContextualWordProcessor
) -> List[Document]:
"""Process all Word files into unified chunks with contextual enhancement"""
all_documents = []
for file_path in word_files:
try:
print(f"[INFO] Processing: {Path(file_path).name}")
chunks = word_processor.process_word_document(file_path)
all_documents.extend(chunks)
# Print processing stats for this file
stats = word_processor.get_document_stats(chunks)
print(
f"[SUCCESS] Processed {Path(file_path).name}: {len(chunks)} chunks"
)
print(f" - Contextualized: {stats.get('contextualized_docs', 0)}")
print(
f" - Non-contextualized: {stats.get('non_contextualized_docs', 0)}"
)
except Exception as e:
print(f"[ERROR] Error processing {Path(file_path).name}: {e}")
return all_documents
def _build_retriever(self, bm25_retriever, chroma_retriever):
"""
Build ensemble retriever with configurable top-k parameters
Args:
bm25_retriever: BM25 retriever with configurable fields
chroma_retriever: Chroma retriever with configurable fields
Returns:
EnsembleRetriever with configurable retrievers
"""
return EnsembleRetriever(
retrievers=[bm25_retriever, chroma_retriever],
weights=[0.2, 0.8], # Slightly favor semantic search
)
def _build_chroma_retriever(
self, documents: List[Document], chroma_dir: str, reset: bool
):
"""Build ChromaDB retriever with configurable search parameters"""
if reset and os.path.exists(chroma_dir):
import shutil
shutil.rmtree(chroma_dir)
print("[INFO] Removed existing ChromaDB for rebuild")
# Create Chroma vectorstore (uses contextualized content)
vectorstore = Chroma.from_documents(
documents=documents, embedding=self.embeddings, persist_directory=chroma_dir
)
# Create retriever with configurable search_kwargs
retriever = vectorstore.as_retriever(
search_kwargs={"k": 5} # default value
).configurable_fields(
search_kwargs=ConfigurableField(
id="chroma_search_kwargs",
name="Chroma Search Kwargs",
description="Search kwargs for Chroma DB retriever",
)
)
print(
f"[SUCCESS] ChromaDB created with {len(documents)} contextualized documents"
)
return retriever
def _build_bm25_retriever(
self, documents: List[Document], bm25_path: str, reset: bool
):
"""Build BM25 retriever with Vietnamese tokenization and configurable k parameter"""
# Note: We no longer save BM25 to pickle file to avoid Streamlit Cloud compatibility issues
# BM25 will be rebuilt from ChromaDB documents when loading the knowledge base
# Create BM25 retriever with Vietnamese tokenizer as preprocess_func
print("[INFO] Using Vietnamese tokenizer for BM25 on contextualized content...")
retriever = BM25Retriever.from_documents(
documents=documents,
preprocess_func=self.text_processor.bm25_tokenizer,
k=5, # default value
).configurable_fields(
k=ConfigurableField(
id="bm25_k",
name="BM25 Top K",
description="Number of documents to return from BM25",
)
)
print(
f"[SUCCESS] BM25 retriever created with {len(documents)} contextualized documents"
)
return retriever
def test_contextual_kb(kb: ViettelKnowledgeBase, test_queries: List[str]):
"""Test function for the contextual knowledge base"""
print("\n[INFO] Testing Contextual Knowledge Base")
print("=" * 60)
for i, query in enumerate(test_queries, 1):
print(f"\n#{i} Query: '{query}'")
print("-" * 40)
try:
# Test ensemble search with configurable top-k
results = kb.search(query, top_k=3)
if results:
for j, doc in enumerate(results, 1):
content_preview = doc.page_content[:150].replace("\n", " ")
doc_type = doc.metadata.get("doc_type", "unknown")
has_context = doc.metadata.get("has_context", False)
context_indicator = (
" [CONTEXTUAL]" if has_context else " [ORIGINAL]"
)
print(
f" {j}. [{doc_type}]{context_indicator} {content_preview}..."
)
else:
print(" No results found")
except Exception as e:
print(f" [ERROR] Error: {e}")
# Example usage
if __name__ == "__main__":
# Initialize knowledge base
kb = ViettelKnowledgeBase(
embedding_model="dangvantuan/vietnamese-document-embedding"
)
# Build knowledge base from a folder of Word documents
documents_folder = "./viettelpay_docs" # Folder containing .doc/.docx files
try:
# Build knowledge base (pass OpenAI API key here for contextual enhancement)
kb.build_knowledge_base(
documents_folder,
"./contextual_kb",
reset=True,
openai_api_key="your-openai-api-key-here", # or None to use env variable
)
# Alternative: Load existing knowledge base
# success = kb.load_knowledge_base("./contextual_kb")
# if not success:
# print("[ERROR] Failed to load knowledge base")
# Test queries
test_queries = [
"lỗi 606",
"không nạp được tiền",
"hướng dẫn nạp cước",
"quy định hủy giao dịch",
"mệnh giá thẻ cào",
]
# Test the knowledge base
test_contextual_kb(kb, test_queries)
# Example of runtime configuration for different top-k values
print(f"\n[INFO] Example of runtime configuration:")
print("=" * 50)
# Search with different top-k values
sample_query = "lỗi 606"
# Search with top_k=3
results1 = kb.search(sample_query, top_k=3)
print(f"Search with top_k=3: {len(results1)} total results")
# Search with top_k=8
results2 = kb.search(sample_query, top_k=8)
print(f"Search with top_k=8: {len(results2)} total results")
# Show stats
print(f"\n[INFO] Knowledge Base Stats: {kb.get_stats()}")
except Exception as e:
print(f"[ERROR] Error building knowledge base: {e}")
print("[INFO] Make sure you have:")
print(" 1. Valid OpenAI API key")
print(" 2. Word documents in the specified folder")
print(" 3. Required dependencies installed (openai, markitdown, etc.)")
|