Spaces:
Running
on
Zero
Running
on
Zero
| from utils.unimax_sampler.unimax_sampler import UnimaxSampler | |
| language_character_counts = [100, 200, 300, 400, 500] | |
| total_character_budget = 1000 | |
| num_epochs = 2 | |
| # Create the UnimaxSampler. | |
| sampler = UnimaxSampler(language_character_counts, total_character_budget, num_epochs) | |
| # Define the expected output. This will depend on your specific implementation of Unimax. | |
| expected_output = torch.tensor([0.1, 0.2, 0.3, 0.2, 0.2]) | |
| # Use PyTorch's allclose function to compare the computed and expected outputs. | |
| # The absolute tolerance parameter atol specifies the maximum difference allowed for the test to pass. | |
| self.assertTrue(torch.allclose(sampler.p, expected_output, atol=1e-6)) |