Spaces:
Running
on
Zero
Running
on
Zero
| from utils.datasets_eval import AudioFileDataset | |
| from torch.utils.data import DataLoader | |
| import pytorch_lightning as pl | |
| def test(): | |
| ds = AudioFileDataset() | |
| dl = DataLoader( | |
| ds, batch_size=None, collate_fn=lambda k: k | |
| ) # empty collate_fn is required to use mixed types. | |
| for x, y in dl: | |
| break | |
| class MyModel(pl.LightningModule): | |
| def __init__(self, **kwargs): | |
| super().__init__() | |
| def forward(self, x): | |
| return x | |
| def training_step(self, batch, batch_idx): | |
| return 0 | |
| def validation_step(self, batch, batch_idx): | |
| print(batch) | |
| return 0 | |
| def train_dataloader(self): | |
| return dl | |
| def val_dataloader(self): | |
| return dl | |
| def configure_optimizers(self): | |
| return None | |
| model = MyModel() | |
| trainer = pl.Trainer() | |
| trainer.validate(model) |