Spaces:
Running
on
Zero
Running
on
Zero
mikonvergence
commited on
Commit
·
5318c78
1
Parent(s):
841fede
front end ready
Browse files- app.py +69 -0
- src/utils.py +170 -0
app.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from src.utils import *
|
| 3 |
+
|
| 4 |
+
theme = gr.themes.Soft(primary_hue="amber", secondary_hue="orange", font=[gr.themes.GoogleFont("Source Sans 3", weights=(400, 600)),'arial'])
|
| 5 |
+
|
| 6 |
+
with gr.Blocks(theme=theme) as demo:
|
| 7 |
+
with gr.Column(elem_classes="header"):
|
| 8 |
+
gr.Markdown("# 🗾 COP-GEN-Beta: Unified Generative Modelling of COPernicus Imagery Thumbnails")
|
| 9 |
+
gr.Markdown("### Miguel Espinosa, Valerio Marsocci, Yuru Jia, Elliot J. Crowley, Mikolaj Czerkawski")
|
| 10 |
+
gr.Markdown('[[Website](https://miquel-espinosa.github.io/cop-gen-beta/)] [[GitHub](https://github.com/miquel-espinosa/COP-GEN-Beta)] [[Model](https://huggingface.co/mespinosami/COP-GEN-Beta)] [[Dataset](https://huggingface.co/Major-TOM)]')
|
| 11 |
+
|
| 12 |
+
with gr.Column(elem_classes="abstract"):
|
| 13 |
+
|
| 14 |
+
with gr.Accordion("Abstract", open=False) as abstract:
|
| 15 |
+
gr.Markdown("In remote sensing, multi-modal data from various sensors capturing the same scene offers rich opportunities, but learning a unified representation across these modalities remains a significant challenge. Traditional methods have often been limited to single or dual-modality approaches. In this paper, we introduce COP-GEN-Beta, a generative diffusion model trained on optical, radar, and elevation data from the Major TOM dataset. What sets COP-GEN-Beta apart is its ability to map any subset of modalities to any other, enabling zero-shot modality translation after training. This is achieved through a sequence-based diffusion transformer, where each modality is controlled by its own timestep embedding. We extensively evaluate COP-GEN-Beta on thumbnail images from the Major TOM dataset, demonstrating its effectiveness in generating high-quality samples. Qualitative and quantitative evaluations validate the model's performance, highlighting its potential as a powerful pre-trained model for future remote sensing tasks.") # Replace with your abstract text
|
| 16 |
+
|
| 17 |
+
with gr.Accordion("Instructions", open=False) as abstract:
|
| 18 |
+
gr.Markdown("1. **Define input**: You can upload your thumbnails manually or you can get a random sample from Major TOM by clicking the button.")
|
| 19 |
+
gr.Markdown("2. **Select conditions**: Each input image can be used as a **conditioning** by selecting the `Active` checkbox. If no checkbox is selected, then you will observe **unconditional generation**.")
|
| 20 |
+
gr.Markdown("3. **Generate**: Click the `Generate` button to synthesize the output. The outputs will be shown below.")
|
| 21 |
+
|
| 22 |
+
with gr.Column():
|
| 23 |
+
with gr.Row():
|
| 24 |
+
gr.Markdown("## Inputs (Optional)")
|
| 25 |
+
load_button = gr.Button("Load a random sample from Major TOM 🗺", variant="secondary")
|
| 26 |
+
with gr.Row():
|
| 27 |
+
with gr.Column():
|
| 28 |
+
s2l1c_input = gr.Image(label="S2 L1C (Optical - Top of Atmosphere)", interactive=True)
|
| 29 |
+
s2l1c_active = gr.Checkbox(value=False, label="Active", interactive=True)
|
| 30 |
+
with gr.Column():
|
| 31 |
+
s2l2a_input = gr.Image(label="S2 L2A (Optical - Bottom of Atmosphere)", interactive=True)
|
| 32 |
+
s2l2a_active = gr.Checkbox(value=False, label="Active", interactive=True)
|
| 33 |
+
with gr.Column():
|
| 34 |
+
s1rtc_input = gr.Image(label="S1 RTC (SAR)", interactive=True)
|
| 35 |
+
s1rtc_active = gr.Checkbox(value=False, label="Active", interactive=True)
|
| 36 |
+
with gr.Column():
|
| 37 |
+
dem_input = gr.Image(label="DEM (Elevation)", interactive=True)
|
| 38 |
+
dem_active = gr.Checkbox(value=False, label="Active", interactive=True)
|
| 39 |
+
|
| 40 |
+
generate_button = gr.Button("Generate", variant="primary")
|
| 41 |
+
|
| 42 |
+
gr.Markdown("## Outputs")
|
| 43 |
+
with gr.Row():
|
| 44 |
+
s2l1c_output = gr.Image(label="S2 L1C (Optical - Top of Atmosphere)", interactive=False)
|
| 45 |
+
s2l2a_output = gr.Image(label="S2 L2A (Optical - Bottom of Atmosphere)", interactive=False)
|
| 46 |
+
s1rtc_output = gr.Image(label="S1 RTC (SAR)", interactive=False)
|
| 47 |
+
dem_output = gr.Image(label="DEM (Elevation)", interactive=False)
|
| 48 |
+
|
| 49 |
+
with gr.Accordion("Advanced Options", open=False) as advanced_options:
|
| 50 |
+
num_inference_steps_slider = gr.Slider(minimum=10, maximum=1000, step=10, value=50, label="Inference Steps")
|
| 51 |
+
guidance_scale_slider = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, value=7.5, label="Guidance Scale")
|
| 52 |
+
with gr.Row():
|
| 53 |
+
seed_number = gr.Number(value=6378, label="Seed")
|
| 54 |
+
seed_checkbox = gr.Checkbox(value=True, label="Random")
|
| 55 |
+
|
| 56 |
+
load_button.click(
|
| 57 |
+
fn=sample_shuffle,
|
| 58 |
+
outputs=[s2l1c_input, s2l1c_active, s2l2a_input,s2l2a_active, s1rtc_input, s1rtc_active, dem_input, dem_active]
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
generate_button.click(
|
| 62 |
+
#fn=generate_output,
|
| 63 |
+
inputs=[s2l1c_input, s2l2a_input, s1rtc_input, dem_input, num_inference_steps_slider, guidance_scale_slider, seed_number, seed_checkbox],
|
| 64 |
+
outputs=[s2l1c_output, s2l2a_output, s1rtc_output, dem_output],
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
demo.launch()
|
| 68 |
+
|
| 69 |
+
demo.launch(share=True)
|
src/utils.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
# GLOBAL VARIABLES
|
| 5 |
+
if os.path.isfile('data/s2l2a_metadata.parquet'):
|
| 6 |
+
l2a_meta_path = 'data/s2l2a_metadata.parquet'
|
| 7 |
+
else:
|
| 8 |
+
DATASET_NAME = 'Major-TOM/Core-S2L2A'
|
| 9 |
+
l2a_meta_path = 'https://huggingface.co/datasets/{}/resolve/main/metadata.parquet'.format(DATASET_NAME)
|
| 10 |
+
|
| 11 |
+
if os.path.isfile('data/s2l1c_metadata.parquet'):
|
| 12 |
+
l1c_meta_path = 'data/s2l1c_metadata.parquet'
|
| 13 |
+
else:
|
| 14 |
+
DATASET_NAME = 'Major-TOM/Core-S2L1C'
|
| 15 |
+
l1c_meta_path = 'https://huggingface.co/datasets/{}/resolve/main/metadata.parquet'.format(DATASET_NAME)
|
| 16 |
+
|
| 17 |
+
if os.path.isfile('/s1rtc_metadata.parquet'):
|
| 18 |
+
rtc_meta_path = 'data/s1rtc_metadata.parquet'
|
| 19 |
+
else:
|
| 20 |
+
DATASET_NAME = 'Major-TOM/Core-S1RTC'
|
| 21 |
+
rtc_meta_path = 'https://huggingface.co/datasets/{}/resolve/main/metadata.parquet'.format(DATASET_NAME)
|
| 22 |
+
|
| 23 |
+
if os.path.isfile('helpers/dem_metadata.parquet'):
|
| 24 |
+
dem_meta_path = 'data/dem_metadata.parquet'
|
| 25 |
+
else:
|
| 26 |
+
DATASET_NAME = 'Major-TOM/Core-DEM'
|
| 27 |
+
dem_meta_path = 'https://huggingface.co/datasets/{}/resolve/main/metadata.parquet'.format(DATASET_NAME)
|
| 28 |
+
|
| 29 |
+
print('Loading Major TOM meta...')
|
| 30 |
+
l2a_df = pd.read_parquet(l2a_meta_path)
|
| 31 |
+
l1c_df = pd.read_parquet(l1c_meta_path)
|
| 32 |
+
rtc_df = pd.read_parquet(rtc_meta_path)
|
| 33 |
+
dem_df = pd.read_parquet(dem_meta_path)
|
| 34 |
+
|
| 35 |
+
# skip files with missing parts
|
| 36 |
+
l2a_df = l2a_df[l2a_df.nodata == 0]
|
| 37 |
+
l1c_df = l1c_df[l1c_df.nodata == 0]
|
| 38 |
+
rtc_df = rtc_df[rtc_df.nodata == 0]
|
| 39 |
+
dem_df = dem_df[dem_df.nodata == 0]
|
| 40 |
+
|
| 41 |
+
# collect grid_cells, drop duplicates, and extract grid cell column only
|
| 42 |
+
grid_cell_df = l2a_df[l2a_df.grid_cell.isin(l1c_df.grid_cell) &l2a_df.grid_cell.isin(rtc_df.grid_cell) & l2a_df.grid_cell.isin(dem_df.grid_cell)]
|
| 43 |
+
gird_cell_df = grid_cell_df.drop_duplicates(subset=['grid_cell'])
|
| 44 |
+
grid_cell_df = grid_cell_df.grid_cell
|
| 45 |
+
print('[DONE]')
|
| 46 |
+
|
| 47 |
+
import pyarrow.parquet as pq
|
| 48 |
+
import fsspec
|
| 49 |
+
from fsspec.parquet import open_parquet_file
|
| 50 |
+
from io import BytesIO
|
| 51 |
+
from PIL import Image
|
| 52 |
+
import random
|
| 53 |
+
|
| 54 |
+
def row2image(row, fullrow_read=True):
|
| 55 |
+
"""
|
| 56 |
+
Extracts an image from a specific row in a Parquet file.
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
row: A row object containing information about the Parquet file and row index.
|
| 60 |
+
It is expected to have attributes 'parquet_row' (the row index within the Parquet file)
|
| 61 |
+
and 'parquet_url' (the URL or path to the Parquet file).
|
| 62 |
+
fullrow_read (bool, optional): Determines whether to read the entire Parquet file or just the 'thumbnail' column initially.
|
| 63 |
+
Defaults to True.
|
| 64 |
+
- If True, it opens the Parquet file using fsspec and reads the entire file.
|
| 65 |
+
- If False, it uses fsspec.parquet.open_parquet_file to only open the 'thumbnail' column.
|
| 66 |
+
|
| 67 |
+
Returns:
|
| 68 |
+
PIL.Image.Image: An Image object loaded from the 'thumbnail' data in the specified row.
|
| 69 |
+
"""
|
| 70 |
+
parquet_row = row.parquet_row
|
| 71 |
+
parquet_url = row.parquet_url
|
| 72 |
+
|
| 73 |
+
if fullrow_read:
|
| 74 |
+
# Option 1: Read the entire Parquet file
|
| 75 |
+
f = fsspec.open(parquet_url)
|
| 76 |
+
temp_path = f.open()
|
| 77 |
+
else:
|
| 78 |
+
# Option 2: Read only the 'thumbnail' column initially
|
| 79 |
+
temp_path = open_parquet_file(parquet_url, columns=["thumbnail"])
|
| 80 |
+
|
| 81 |
+
with pq.ParquetFile(temp_path) as pf:
|
| 82 |
+
first_row_group = pf.read_row_group(parquet_row, columns=['thumbnail'])
|
| 83 |
+
|
| 84 |
+
stream = BytesIO(first_row_group['thumbnail'][0].as_py())
|
| 85 |
+
return Image.open(stream)
|
| 86 |
+
|
| 87 |
+
# Example usage (assuming 'dem_df' is a Pandas DataFrame with the required structure):
|
| 88 |
+
# row2image(dem_df.iloc[1000])
|
| 89 |
+
|
| 90 |
+
def get_rows(grid_cell):
|
| 91 |
+
"""
|
| 92 |
+
Retrieves the first row from multiple DataFrames based on a given 'grid_cell' value.
|
| 93 |
+
|
| 94 |
+
Args:
|
| 95 |
+
grid_cell: The value to filter the DataFrames by in the 'grid_cell' column.
|
| 96 |
+
|
| 97 |
+
Returns:
|
| 98 |
+
tuple: A tuple containing the first matching row from each of the following DataFrames:
|
| 99 |
+
l2a_df, l1c_df, rtc_df, and dem_df. It assumes these DataFrames are defined in the scope.
|
| 100 |
+
Each element of the tuple is a Pandas Series representing a row.
|
| 101 |
+
"""
|
| 102 |
+
return l2a_df[l2a_df.grid_cell == grid_cell].iloc[0], \
|
| 103 |
+
l1c_df[l1c_df.grid_cell == grid_cell].iloc[0], \
|
| 104 |
+
rtc_df[rtc_df.grid_cell == grid_cell].iloc[0], \
|
| 105 |
+
dem_df[dem_df.grid_cell == grid_cell].iloc[0]
|
| 106 |
+
|
| 107 |
+
def get_images(grid_cell):
|
| 108 |
+
"""
|
| 109 |
+
Retrieves images corresponding to a specific 'grid_cell' by calling get_rows and row2image.
|
| 110 |
+
|
| 111 |
+
Args:
|
| 112 |
+
grid_cell: The grid cell identifier to fetch images for.
|
| 113 |
+
|
| 114 |
+
Returns:
|
| 115 |
+
list: A list of PIL.Image.Image objects, where each image is extracted from the rows
|
| 116 |
+
returned by the get_rows function for the given grid cell.
|
| 117 |
+
"""
|
| 118 |
+
img_rows = get_rows(grid_cell)
|
| 119 |
+
|
| 120 |
+
imgs = []
|
| 121 |
+
for row in img_rows:
|
| 122 |
+
imgs.append(row2image(row))
|
| 123 |
+
|
| 124 |
+
return imgs
|
| 125 |
+
|
| 126 |
+
def resize_and_crop(images, image_size=(1068, 1068), crop_size=(256, 256)):
|
| 127 |
+
"""
|
| 128 |
+
Resizes a list of images to a specified size and then crops a random portion from each.
|
| 129 |
+
|
| 130 |
+
Args:
|
| 131 |
+
images (list): A list of PIL.Image.Image objects to be processed.
|
| 132 |
+
image_size (tuple, optional): The target size (width, height) to resize the images to.
|
| 133 |
+
Defaults to (1068, 1068).
|
| 134 |
+
crop_size (tuple, optional): The size (width, height) of the random crop to be taken
|
| 135 |
+
from the resized images. Defaults to (256, 256).
|
| 136 |
+
|
| 137 |
+
Returns:
|
| 138 |
+
list: A list of PIL.Image.Image objects, where each image has been resized and then cropped.
|
| 139 |
+
"""
|
| 140 |
+
left = random.randint(0, image_size[0] - crop_size[0])
|
| 141 |
+
top = random.randint(0, image_size[1] - crop_size[1])
|
| 142 |
+
right = left + crop_size[0]
|
| 143 |
+
bottom = top + crop_size[1]
|
| 144 |
+
|
| 145 |
+
return [img.resize(image_size).crop((left, top, right, bottom)) for img in images]
|
| 146 |
+
|
| 147 |
+
def sample_shuffle(interface=True):
|
| 148 |
+
"""
|
| 149 |
+
Randomly selects a 'grid_cell', retrieves corresponding images, and optionally prepares them for an interface.
|
| 150 |
+
|
| 151 |
+
Args:
|
| 152 |
+
interface (bool, optional): If True, the function returns a list where each image is followed by True.
|
| 153 |
+
This might be intended for an interface that expects an image and a boolean flag.
|
| 154 |
+
If False, it returns just the list of processed images. Defaults to True.
|
| 155 |
+
|
| 156 |
+
Returns:
|
| 157 |
+
list: If interface is False, returns a list of resized and cropped PIL.Image.Image objects.
|
| 158 |
+
If interface is True, returns a list where each image is followed by the boolean value True.
|
| 159 |
+
"""
|
| 160 |
+
grid_cell = grid_cell_df.sample().iloc[0]
|
| 161 |
+
|
| 162 |
+
images = resize_and_crop(get_images(grid_cell))
|
| 163 |
+
|
| 164 |
+
if not interface:
|
| 165 |
+
return images
|
| 166 |
+
else:
|
| 167 |
+
out = []
|
| 168 |
+
for el in images:
|
| 169 |
+
out += [el, True]
|
| 170 |
+
return out
|