Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| import math | |
| from .MLP import trunc_normal_, DropPath, Mlp | |
| import einops | |
| import torch.utils.checkpoint | |
| import torch.nn.functional as F | |
| if hasattr(torch.nn.functional, 'scaled_dot_product_attention'): | |
| ATTENTION_MODE = 'flash' | |
| else: | |
| try: | |
| import xformers | |
| import xformers.ops | |
| ATTENTION_MODE = 'xformers' | |
| except: | |
| ATTENTION_MODE = 'math' | |
| print(f'attention mode is {ATTENTION_MODE}') | |
| def timestep_embedding(timesteps, dim, max_period=10000): | |
| """ | |
| Create sinusoidal timestep embeddings. | |
| :param timesteps: a 1-D Tensor of N indices, one per batch element. | |
| These may be fractional. | |
| :param dim: the dimension of the output. | |
| :param max_period: controls the minimum frequency of the embeddings. | |
| :return: an [N x dim] Tensor of positional embeddings. | |
| """ | |
| half = dim // 2 | |
| freqs = torch.exp( | |
| -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
| ).to(device=timesteps.device) | |
| args = timesteps[:, None].float() * freqs[None] | |
| embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
| if dim % 2: | |
| embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
| return embedding | |
| def patchify(imgs, patch_size): | |
| x = einops.rearrange(imgs, 'B C (h p1) (w p2) -> B (h w) (p1 p2 C)', p1=patch_size, p2=patch_size) | |
| return x | |
| def unpatchify(x, in_chans): | |
| patch_size = int((x.shape[2] // in_chans) ** 0.5) | |
| h = w = int(x.shape[1] ** .5) | |
| assert h * w == x.shape[1] and patch_size ** 2 * in_chans == x.shape[2] | |
| x = einops.rearrange(x, 'B (h w) (p1 p2 C) -> B C (h p1) (w p2)', h=h, p1=patch_size, p2=patch_size) | |
| return x | |
| def interpolate_pos_emb(pos_emb, old_shape, new_shape): | |
| pos_emb = einops.rearrange(pos_emb, 'B (H W) C -> B C H W', H=old_shape[0], W=old_shape[1]) | |
| pos_emb = F.interpolate(pos_emb, new_shape, mode='bilinear') | |
| pos_emb = einops.rearrange(pos_emb, 'B C H W -> B (H W) C') | |
| return pos_emb | |
| class Attention(nn.Module): | |
| def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
| super().__init__() | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = qk_scale or head_dim ** -0.5 | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| def forward(self, x): | |
| B, L, C = x.shape | |
| qkv = self.qkv(x) | |
| if ATTENTION_MODE == 'flash': | |
| qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads).float() | |
| q, k, v = qkv[0], qkv[1], qkv[2] # B H L D | |
| x = torch.nn.functional.scaled_dot_product_attention(q, k, v) | |
| x = einops.rearrange(x, 'B H L D -> B L (H D)') | |
| elif ATTENTION_MODE == 'xformers': | |
| qkv = einops.rearrange(qkv, 'B L (K H D) -> K B L H D', K=3, H=self.num_heads) | |
| q, k, v = qkv[0], qkv[1], qkv[2] # B L H D | |
| x = xformers.ops.memory_efficient_attention(q, k, v) | |
| x = einops.rearrange(x, 'B L H D -> B L (H D)', H=self.num_heads) | |
| elif ATTENTION_MODE == 'math': | |
| with torch.amp.autocast(device_type='cuda', enabled=False): | |
| qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads).float() | |
| q, k, v = qkv[0], qkv[1], qkv[2] # B H L D | |
| attn = (q @ k.transpose(-2, -1)) * self.scale | |
| attn = attn.softmax(dim=-1) | |
| attn = self.attn_drop(attn) | |
| x = (attn @ v).transpose(1, 2).reshape(B, L, C) | |
| else: | |
| raise NotImplemented | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| class Block(nn.Module): | |
| def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
| drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip=False, use_checkpoint=False): | |
| super().__init__() | |
| self.norm1 = norm_layer(dim) if skip else None | |
| self.norm2 = norm_layer(dim) | |
| self.attn = Attention( | |
| dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.norm3 = norm_layer(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
| self.skip_linear = nn.Linear(2 * dim, dim) if skip else None | |
| self.use_checkpoint = use_checkpoint | |
| def forward(self, x, skip=None): | |
| if self.use_checkpoint: | |
| return torch.utils.checkpoint.checkpoint(self._forward, x, skip) | |
| else: | |
| return self._forward(x, skip) | |
| def _forward(self, x, skip=None): | |
| if self.skip_linear is not None: | |
| x = self.skip_linear(torch.cat([x, skip], dim=-1)) | |
| x = self.norm1(x) | |
| x = x + self.drop_path(self.attn(x)) | |
| x = self.norm2(x) | |
| x = x + self.drop_path(self.mlp(x)) | |
| x = self.norm3(x) | |
| return x | |
| class PatchEmbed(nn.Module): | |
| """ Image to Patch Embedding | |
| """ | |
| def __init__(self, patch_size, in_chans=3, embed_dim=768): | |
| super().__init__() | |
| self.patch_size = patch_size | |
| self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
| def forward(self, x): | |
| B, C, H, W = x.shape | |
| assert H % self.patch_size == 0 and W % self.patch_size == 0 | |
| x = self.proj(x).flatten(2).transpose(1, 2) | |
| return x | |
| class Triffuser(nn.Module): | |
| def __init__(self, | |
| img_size=32, # Assuming latent diffusion | |
| in_chans=4, # Assuming latent diffusion | |
| num_modalities=4, | |
| patch_size=2, | |
| embed_dim=1024, | |
| depth=20, | |
| num_heads=16, | |
| mlp_ratio=4., | |
| qkv_bias=False, | |
| qk_scale=None, | |
| pos_drop_rate=0., | |
| drop_rate=0., | |
| attn_drop_rate=0., | |
| norm_layer=nn.LayerNorm, | |
| mlp_time_embed=False, | |
| use_checkpoint=False, | |
| # text_dim=None, | |
| # num_text_tokens=None, | |
| clip_img_dim=None # All modalities with the same clip dimension | |
| ): | |
| super().__init__() | |
| self.in_chans = in_chans | |
| self.patch_size = patch_size | |
| self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
| self.num_modalities = num_modalities | |
| if num_modalities is None: | |
| raise ValueError("num_modalities must be provided") | |
| self.patch_embeds = nn.ModuleList([PatchEmbed(patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) for _ in range(num_modalities)]) | |
| self.img_size = (img_size, img_size) if isinstance(img_size, int) else img_size # the default img size | |
| assert self.img_size[0] % patch_size == 0 and self.img_size[1] % patch_size == 0 | |
| self.num_patches = (self.img_size[0] // patch_size) * (self.img_size[1] // patch_size) | |
| self.time_img_embeds = nn.ModuleList([nn.Sequential( | |
| nn.Linear(embed_dim, 4 * embed_dim), | |
| nn.SiLU(), | |
| nn.Linear(4 * embed_dim, embed_dim), | |
| ) if mlp_time_embed else nn.Identity() for _ in range(num_modalities)]) | |
| # self.text_embed = nn.Linear(text_dim, embed_dim) | |
| # self.text_out = nn.Linear(embed_dim, text_dim) | |
| # TODO: We skip clip embedding for now | |
| # self.clip_img_embed = nn.Linear(clip_img_dim, embed_dim) | |
| # self.clip_img_out = nn.Linear(embed_dim, clip_img_dim) | |
| # self.num_text_tokens = num_text_tokens | |
| # TODO: ATM we assume the same num_patches for all modalities | |
| # 1 for time embedding token of each modality | |
| # num_patches for each modality (assuming the same number of patches for all modalities) | |
| self.num_tokens = 1 * self.num_modalities + self.num_patches * self.num_modalities | |
| self.pos_embed = nn.Parameter(torch.zeros(1, self.num_tokens, embed_dim)) | |
| self.pos_drop = nn.Dropout(p=pos_drop_rate) | |
| self.in_blocks = nn.ModuleList([ | |
| Block( | |
| dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer, use_checkpoint=use_checkpoint) | |
| for _ in range(depth // 2)]) | |
| self.mid_block = Block( | |
| dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer, use_checkpoint=use_checkpoint) | |
| self.out_blocks = nn.ModuleList([ | |
| Block( | |
| dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer, skip=True, use_checkpoint=use_checkpoint) | |
| for _ in range(depth // 2)]) | |
| self.norm = norm_layer(embed_dim) | |
| self.patch_dim = patch_size ** 2 * in_chans | |
| self.decoder_preds = nn.ModuleList([nn.Linear(embed_dim, self.patch_dim, bias=True) for _ in range(num_modalities)]) | |
| trunc_normal_(self.pos_embed, std=.02) | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| def no_weight_decay(self): | |
| return {'pos_embed'} | |
| def forward(self, imgs, t_imgs): | |
| assert len(imgs) == len(t_imgs) == self.num_modalities | |
| # TODO: We are still assuming all images have the same shape | |
| _, _, H, W = imgs[0].shape | |
| imgs = [self.patch_embeds[i](img) for i, img in enumerate(imgs)] | |
| t_imgs_token = [self.time_img_embeds[i](timestep_embedding(t_img, self.embed_dim)) for i, t_img in enumerate(t_imgs)] | |
| t_imgs_token = [t_img_token.unsqueeze(dim=1) for t_img_token in t_imgs_token] | |
| # text = self.text_embed(text) | |
| # clip_img = self.clip_img_embed(clip_img) | |
| x = torch.cat((*t_imgs_token, *imgs), dim=1) | |
| num_img_tokens = [img.size(1) for img in imgs] # Each image might have different number of tokens | |
| num_t_tokens = [1] * self.num_modalities # There is only one time token for each modality | |
| # TODO: ATM assume all modality images have the same shape | |
| if H == self.img_size[0] and W == self.img_size[1]: | |
| pos_embed = self.pos_embed | |
| else: # interpolate the positional embedding when the input image is not of the default shape | |
| raise NotImplementedError("Why are we here? Images are not of the default shape. Interpolate positional embedding.") | |
| pos_embed_others, pos_embed_patches = torch.split(self.pos_embed, [1 + 1 + num_text_tokens + 1, self.num_patches], dim=1) | |
| pos_embed_patches = interpolate_pos_emb(pos_embed_patches, (self.img_size[0] // self.patch_size, self.img_size[1] // self.patch_size), | |
| (H // self.patch_size, W // self.patch_size)) | |
| pos_embed = torch.cat((pos_embed_others, pos_embed_patches), dim=1) | |
| x = x + pos_embed | |
| x = self.pos_drop(x) | |
| skips = [] | |
| for blk in self.in_blocks: | |
| x = blk(x) | |
| skips.append(x) | |
| x = self.mid_block(x) | |
| for blk in self.out_blocks: | |
| x = blk(x, skips.pop()) | |
| x = self.norm(x) | |
| all_t_imgs = x.split((*num_t_tokens, *num_img_tokens), dim=1) | |
| t_imgs_token_out = all_t_imgs[:self.num_modalities] | |
| imgs_out = all_t_imgs[self.num_modalities:] | |
| imgs_out = [self.decoder_preds[i](img_out) for i, img_out in enumerate(imgs_out)] | |
| imgs_out = [unpatchify(img_out, self.in_chans) for img_out in imgs_out] | |
| # clip_img_out = self.clip_img_out(clip_img_out) | |
| # text_out = self.text_out(text_out) | |
| return imgs_out |