Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import modin.pandas as pd | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| from diffusers import LCMScheduler,AutoencoderTiny, AutoPipelineForImage2Image | |
| from diffusers.utils import load_image | |
| import math | |
| import time | |
| model_id = "segmind/Segmind-Vega" | |
| adapter_id = "segmind/Segmind-VegaRT" | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = AutoPipelineForImage2Image.from_pretrained(model_id, torch_dtype=torch.float16) if torch.cuda.is_available() else AutoPipelineForImage2Image.from_pretrained(model_id) | |
| pipe.vae = AutoencoderTiny.from_pretrained( | |
| "madebyollin/taesd", | |
| use_safetensors=True, | |
| ) | |
| pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
| pipe = pipe.to(device) | |
| pipe.load_lora_weights(adapter_id) | |
| pipe.fuse_lora() | |
| def resize(w,h,img): | |
| img = img.resize((w,h)) | |
| return img | |
| def infer(source_img, prompt, steps, seed, Strength): | |
| start = time.time() | |
| print("开始") | |
| img = Image.open(source_img) | |
| generator = torch.Generator(device).manual_seed(seed) | |
| if int(steps * Strength) < 1: | |
| steps = math.ceil(1 / max(0.10, Strength)) | |
| w, h = img.size | |
| newW = 512 | |
| newH = int(h * newW / w) | |
| source_image = resize(newW,newH, img) | |
| source_image.save('source.png') | |
| image = pipe(prompt, image=source_image,width=newW,height=newH, strength=Strength, guidance_scale=0.0, num_inference_steps=steps).images[0] | |
| end = time.time() | |
| print("步数",steps) | |
| print("时间",end-start) | |
| return image | |
| gr.Interface(fn=infer, inputs=[ | |
| gr.Image(sources=["upload", "webcam", "clipboard"], type="filepath", label="Raw Image."), | |
| gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'), | |
| gr.Slider(1, 5, value = 2, step = 1, label = 'Number of Iterations'), | |
| gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True), | |
| gr.Slider(label='Strength', minimum = 0.1, maximum = 1, step = .05, value = .5)], | |
| outputs='image', title = "Stable Diffusion XL Turbo Image to Image Pipeline CPU", description = "For more information on Stable Diffusion XL Turbo see https://huggingface.co/stabilityai/sdxl-turbo <br><br>Upload an Image, Use your Cam, or Paste an Image. Then enter a Prompt, or let it just do its Thing, then click submit. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", | |
| article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(max_size=10).launch() |