#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Sundew Diabetes Watch — Streamlit App (multilingual, model backends, Sundew v0.6/v0.7 compatible) - Multilingual UI: English, French, Swahili, Hausa (DeepTranslate API or deep_translator fallback) - Model backends: Demo(LogReg), XGBoost(.json), PyTorch TorchScript(.pt/.pth), ONNX(.onnx) - Sundew selective-activation gate with compatibility wrapper across package versions - Robust timestamp parsing (handles tz-aware), ROC calculation, KPIs, charts, and alerts - Research prototype — not medical advice """ from __future__ import annotations import math import os import inspect from dataclasses import dataclass from typing import Dict, Tuple, Optional, Callable import numpy as np import pandas as pd import streamlit as st # ------------------------------ Sundew import (tolerant) ------------------------------ try: from sundew import SundewAlgorithm # provided by sundew-algorithms _HAS_SUNDEW = True except Exception: SundewAlgorithm = None # type: ignore _HAS_SUNDEW = False # ------------------------------ Optional model backends ------------------------------ _HAS_XGB = False try: import xgboost as xgb # type: ignore _HAS_XGB = True except Exception: pass _HAS_TORCH = False try: import torch # type: ignore _HAS_TORCH = True except Exception: pass _HAS_ONNX = False try: import onnxruntime as ort # type: ignore _HAS_ONNX = True except Exception: pass # ------------------------------ Translation utils ------------------------------ import requests from deep_translator import GoogleTranslator DT_KEY = os.getenv("DEEPTRANSLATE_API_KEY", "").strip() DT_ENDPOINT = os.getenv( "DEEPTRANSLATE_ENDPOINT", "https://deep-translate1.p.rapidapi.com/language/translate/v2", ).strip() @st.cache_data(show_spinner=False) def _translate_deeptranslate(text: str, target_lang: str, source_lang: str = "en") -> str: """Translate via DeepTranslate (RapidAPI-style). Caches results.""" if not DT_KEY: raise RuntimeError("Missing DEEPTRANSLATE_API_KEY") headers = { "content-type": "application/json", "X-RapidAPI-Key": DT_KEY, "X-RapidAPI-Host": "deep-translate1.p.rapidapi.com", } payload = {"q": text, "source": source_lang, "target": target_lang} r = requests.post(DT_ENDPOINT, json=payload, headers=headers, timeout=10) r.raise_for_status() data = r.json() return data.get("data", {}).get("translations", {}).get("translatedText", text) @st.cache_data(show_spinner=False) def _translate_fallback(text: str, target_lang: str, source_lang: str = "en") -> str: """Fallback using deep_translator (Google).""" try: return GoogleTranslator(source=source_lang, target=target_lang).translate(text) except Exception: return text _translation_cache: Dict[Tuple[str, str], str] = {} def tr(text: str, target_lang: str, source_lang: str = "en") -> str: """Translate with DeepTranslate if key set, else fallback, with an in-session cache.""" key = (text, target_lang) if key in _translation_cache: return _translation_cache[key] if target_lang.lower() in ("en", "eng", "english"): _translation_cache[key] = text return text try: out = _translate_deeptranslate(text, target_lang, source_lang) except Exception: out = _translate_fallback(text, target_lang, source_lang) _translation_cache[key] = out return out LANGS = { "English": "en", "Français (French)": "fr", "Kiswahili (Swahili)": "sw", "Hausa": "ha", } # ------------------------------ Sundew wrapper (v0.6 + v0.7) ------------------------------ @dataclass class SundewGate: target_activation: float = 0.25 temperature: float = 0.08 mode: str = "tuned_v2" def __post_init__(self): self.sd = None if _HAS_SUNDEW and SundewAlgorithm is not None: cfg = { "target_activation": self.target_activation, "temperature": self.temperature, "mode": self.mode, } try: sig = inspect.signature(SundewAlgorithm) if "config" in sig.parameters: # 0.7.x style try: self.sd = SundewAlgorithm(config=cfg) except TypeError: self.sd = SundewAlgorithm(cfg) # positional else: # 0.6.x style kwargs self.sd = SundewAlgorithm( target_activation=self.target_activation, temperature=self.temperature, mode=self.mode, ) except Exception: pass # try factory helpers if constructor failed if self.sd is None: for factory in ("from_config", "create", "build"): if hasattr(SundewAlgorithm, factory): try: self.sd = getattr(SundewAlgorithm, factory)(cfg) break except Exception: continue # fallback gate state (keeps app usable even if Sundew not available) self._tau = 0.5 self._ema = 0.0 self._alpha = 0.02 # EMA smoothing def decide(self, score: float) -> bool: score = float(max(0.0, min(1.0, score))) if self.sd is not None: for method_name in ("decide", "step", "open"): if hasattr(self.sd, method_name): try: return bool(getattr(self.sd, method_name)(score)) except Exception: pass # fallback stochastic logistic gate targeting activation rate p_open = 1.0 / (1.0 + math.exp(-(score - self._tau) / max(1e-6, self.temperature))) fired = np.random.rand() < p_open self._ema = (1 - self._alpha) * self._ema + self._alpha * (1.0 if fired else 0.0) self._tau += 0.01 * (self.target_activation - self._ema) self._tau = min(0.95, max(0.05, self._tau)) return fired # ------------------------------ Risk scoring ------------------------------ def compute_lightweight_score(row: pd.Series) -> float: """Heuristic risk proxy in [0,1] using glucose, rate-of-change, insulin, carbs, heart rate.""" g = float(row.get("glucose_mgdl", np.nan)) roc = float(row.get("roc_mgdl_min", 0.0)) insulin = float(row.get("insulin_units", 0.0)) carbs = float(row.get("carbs_g", 0.0)) hr = float(row.get("hr", 0.0)) low_gap = max(0.0, 80 - g) high_gap = max(0.0, g - 140) base = (low_gap + high_gap) / 120.0 # ~[0,1] roc_term = min(1.0, abs(roc) / 3.0) # 3 mg/dL/min ~ strong trend insulin_term = min(1.0, insulin / 6.0) * (1.0 if roc < -0.5 else 0.3) carbs_term = min(1.0, carbs / 50.0) * (1.0 if roc > 0.5 else 0.3) activity_term = min(1.0, max(0.0, hr - 100) / 60.0) * (1.0 if insulin > 0.5 else 0.2) score = base + 0.7 * roc_term + 0.5 * insulin_term + 0.4 * carbs_term + 0.3 * activity_term return float(max(0.0, min(1.0, score))) # ------------------------------ Heavy model backends ------------------------------ def build_demo_model(df: pd.DataFrame): """Session-trained logistic regression demo model (portable).""" from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline model = Pipeline([("scaler", StandardScaler()), ("clf", LogisticRegression(max_iter=1000))]) tmp = df.copy() # label: 30-min ahead hypo (<70) OR hyper (>180) tmp["future_glucose"] = tmp["glucose_mgdl"].shift(-6) # assuming 5-min cadence tmp["label"] = ((tmp["future_glucose"] < 70) | (tmp["future_glucose"] > 180)).astype(int) tmp = tmp.dropna(subset=["label"]).copy() X = tmp[["glucose_mgdl", "roc_mgdl_min", "insulin_units", "carbs_g", "hr"]].fillna(0.0).values y = tmp["label"].values if len(np.unique(y)) < 2: # ensure fit works even with degenerate labels y = np.array([0, 1] * (len(X) // 2 + 1))[: len(X)] model.fit(X, y) def _predict(Xarr: np.ndarray) -> float: try: return float(model.predict_proba(Xarr)[0, 1]) except Exception: return float(model.predict(Xarr)[0]) return _predict def load_xgb_predictor(file_bytes: bytes) -> Callable[[np.ndarray], float]: if not _HAS_XGB: raise RuntimeError("XGBoost not installed in this environment.") import tempfile with tempfile.NamedTemporaryFile(suffix=".json", delete=False) as f: f.write(file_bytes) path = f.name booster = xgb.XGBClassifier() booster.load_model(path) def _predict(Xarr: np.ndarray) -> float: return float(booster.predict_proba(Xarr)[0, 1]) return _predict def load_torch_predictor(file_bytes: bytes) -> Callable[[np.ndarray], float]: if not _HAS_TORCH: raise RuntimeError("PyTorch not installed in this environment.") import io model = torch.jit.load(io.BytesIO(file_bytes), map_location="cpu") model.eval() @torch.no_grad() def _predict(Xarr: np.ndarray) -> float: t = torch.tensor(Xarr, dtype=torch.float32) out = model(t) # accept logits or probabilities if out.ndim == 2 and out.shape[1] == 1: out = out.squeeze(1) out = torch.sigmoid(out) if (out.ndim == 1 or out.shape[1] == 1) else torch.softmax(out, dim=1)[:, 1] return float(out[0].cpu().item()) return _predict def load_onnx_predictor(file_bytes: bytes) -> Callable[[np.ndarray], float]: if not _HAS_ONNX: raise RuntimeError("onnxruntime not installed in this environment.") import tempfile with tempfile.NamedTemporaryFile(suffix=".onnx", delete=False) as f: f.write(file_bytes) path = f.name sess = ort.InferenceSession(path, providers=["CPUExecutionProvider"]) input_name = sess.get_inputs()[0].name def _predict(Xarr: np.ndarray) -> float: y = sess.run(None, {input_name: Xarr.astype(np.float32)})[0] if y.ndim == 2 and y.shape[1] == 2: return float(y[0, 1]) if y.ndim == 2 and y.shape[1] == 1: return float(y[0, 0]) return float(np.ravel(y)[0]) return _predict # ------------------------------ Streamlit UI ------------------------------ st.set_page_config(page_title="Sundew Diabetes Watch", layout="wide") # Language selector lang_name = st.sidebar.selectbox("Language / Lugha / Taal / Harshe", list(LANGS.keys()), index=0) LANG = LANGS[lang_name] T = lambda s: tr(s, LANG, "en") st.title("🌿 " + T("Sundew Diabetes Watch")) st.caption(T("Energy-aware selective activation for diabetes monitoring — research demo (not medical advice).")) # File upload / controls left, right = st.columns([2, 1]) with left: uploaded = st.file_uploader( T("Upload CGM CSV (timestamp, glucose_mgdl, carbs_g, insulin_units, steps, hr)"), type=["csv"], ) use_synth = st.checkbox(T("Use synthetic example if no file uploaded"), value=True) with right: target_activation = st.slider(T("Target heavy-activation rate"), 0.05, 0.9, 0.25, 0.01) temperature = st.slider(T("Gate temperature"), 0.02, 0.5, 0.08, 0.01) mode = st.selectbox(T("Sundew mode"), ["tuned_v2", "conservative", "aggressive", "auto_tuned"], index=0) # Backend selector with stable internal keys backend_options = [ ("demo", T("Demo (Logistic Regression)")), ("xgb", "XGBoost"), ("torch", "PyTorch"), ("onnx", "ONNX"), ] backend_label = st.sidebar.selectbox(T("Model backend"), [lbl for _, lbl in backend_options], index=0) BACKEND_KEY = next(k for k, lbl in backend_options if lbl == backend_label) model_file = None if BACKEND_KEY in ("xgb", "torch", "onnx"): model_file = st.sidebar.file_uploader(T("Upload trained model file"), type=["json", "bin", "pt", "pth", "onnx"], key="model") # ------------------------------ Load/synthesize data ------------------------------ if uploaded is not None: df = pd.read_csv(uploaded) else: if not use_synth: st.stop() rng = np.random.default_rng(7) n = 600 # ~50 hours if 5-min cadence t0 = pd.Timestamp.utcnow().floor("min") times = [t0 + pd.Timedelta(minutes=5 * i) for i in range(n)] base = 120 + 25 * np.sin(np.linspace(0, 10 * np.pi, n)) noise = rng.normal(0, 10, n) meals = (rng.random(n) < 0.04).astype(float) * rng.normal(45, 15, n).clip(0, 120) insulin = (rng.random(n) < 0.03).astype(float) * rng.normal(4, 1.2, n).clip(0, 8) steps = rng.integers(0, 150, size=n) hr = 70 + (steps > 80) * rng.integers(30, 60, size=n) glucose = base + noise + 0.3 * meals - 0.8 * insulin df = pd.DataFrame( { "timestamp": times, "glucose_mgdl": np.round(glucose, 1), "carbs_g": np.round(meals, 1), "insulin_units": np.round(insulin, 1), "steps": steps, "hr": hr, } ) # Robust timestamp parsing (handles tz-aware, strings, epoch) from pandas.api.types import is_datetime64_any_dtype if "timestamp" not in df.columns: st.error(T("CSV must include a 'timestamp' column.")) st.stop() if not is_datetime64_any_dtype(df["timestamp"]): df["timestamp"] = pd.to_datetime(df["timestamp"], utc=True, errors="coerce") # Localize if naive if getattr(df["timestamp"].dt, "tz", None) is None: df["timestamp"] = df["timestamp"].dt.tz_localize("UTC") df = df.sort_values("timestamp").reset_index(drop=True) # Rate-of-change mg/dL per minute df["dt_min"] = df["timestamp"].diff().dt.total_seconds() / 60.0 df["glucose_prev"] = df["glucose_mgdl"].shift(1) df["roc_mgdl_min"] = (df["glucose_mgdl"] - df["glucose_prev"]) / df["dt_min"] df["roc_mgdl_min"] = df["roc_mgdl_min"].replace([np.inf, -np.inf], 0.0).fillna(0.0) # ------------------------------ Heavy predictor selection ------------------------------ predict_proba: Optional[Callable[[np.ndarray], float]] = None header_note = "" if BACKEND_KEY == "demo": predict_proba = build_demo_model(df) header_note = T("Demo model trains per session for portability.") elif BACKEND_KEY == "xgb" and model_file is not None: try: predict_proba = load_xgb_predictor(model_file.read()) header_note = T("XGBoost model loaded from file.") except Exception as e: st.warning(T("Could not load XGBoost model; falling back to Demo.")) predict_proba = build_demo_model(df) header_note = T("Demo model used (no external file).") elif BACKEND_KEY == "torch" and model_file is not None: try: predict_proba = load_torch_predictor(model_file.read()) header_note = T("PyTorch TorchScript model loaded.") except Exception: st.warning(T("Could not load PyTorch model; falling back to Demo.")) predict_proba = build_demo_model(df) header_note = T("Demo model used (no external file).") elif BACKEND_KEY == "onnx" and model_file is not None: try: predict_proba = load_onnx_predictor(model_file.read()) header_note = T("ONNX model loaded via onnxruntime.") except Exception: st.warning(T("Could not load ONNX model; falling back to Demo.")) predict_proba = build_demo_model(df) header_note = T("Demo model used (no external file).") else: st.warning(T("Selected backend requires a model file. Falling back to Demo.")) predict_proba = build_demo_model(df) header_note = T("Demo model used (no external file).") st.info(header_note) # ------------------------------ Gate + streaming loop ------------------------------ gate = SundewGate(target_activation=target_activation, temperature=temperature, mode=mode) def make_X(row: pd.Series) -> np.ndarray: return np.array( [ [ row.get("glucose_mgdl", 0.0), row.get("roc_mgdl_min", 0.0), row.get("insulin_units", 0.0), row.get("carbs_g", 0.0), row.get("hr", 0.0), ] ], dtype=np.float32, ) records = [] alerts = [] for _, row in df.iterrows(): score = compute_lightweight_score(row) open_gate = gate.decide(score) decision = "SKIP" proba = None if open_gate and predict_proba is not None: X = make_X(row) try: proba = float(predict_proba(X)) except Exception: proba = None decision = "RUN" if proba is not None and proba >= 0.6: alerts.append( { "timestamp": row["timestamp"], "glucose": row["glucose_mgdl"], "risk_proba": proba, "note": T("⚠ Elevated 30-min risk — please check CGM and plan carbs/insulin."), } ) records.append( { "timestamp": row["timestamp"], "glucose": row["glucose_mgdl"], "roc": row["roc_mgdl_min"], "score": score, "gate": decision, "risk_proba": proba, } ) out = pd.DataFrame(records) events = len(out) activations = int((out["gate"] == "RUN").sum()) rate = activations / max(events, 1) c1, c2, c3 = st.columns(3) c1.metric(T("Events"), f"{events}") c2.metric(T("Heavy activations"), f"{activations}") c3.metric(T("Activation rate"), f"{rate:.2%}") st.line_chart(out.set_index("timestamp")["glucose"], height=220) st.line_chart(out.set_index("timestamp")["score"], height=220) st.subheader(T("Decisions (tail)")) st.dataframe(out.tail(50)) st.subheader(T("Alerts")) if alerts: st.dataframe(pd.DataFrame(alerts)) else: st.info(T("No high-risk alerts triggered in this window.")) # Footer: show Sundew version & engine status try: from importlib.metadata import version as _ver _sundew_ver = _ver("sundew-algorithms") except Exception: _sundew_ver = "unknown" engine_txt = f"sundew-algorithms {_sundew_ver}" if _HAS_SUNDEW else T("fallback gate (install sundew-algorithms)") st.caption(T("Engine: ") + engine_txt)