Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -1,478 +1,478 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
-
# -*- coding: utf-8 -*-
|
| 3 |
-
"""
|
| 4 |
-
Sundew Diabetes Watch — Streamlit App (multilingual, model backends, Sundew v0.6/v0.7 compatible)
|
| 5 |
-
|
| 6 |
-
- Multilingual UI: English, French, Swahili, Hausa (DeepTranslate API or deep_translator fallback)
|
| 7 |
-
- Model backends: Demo(LogReg), XGBoost(.json), PyTorch TorchScript(.pt/.pth), ONNX(.onnx)
|
| 8 |
-
- Sundew selective-activation gate with compatibility wrapper across package versions
|
| 9 |
-
- Robust timestamp parsing (handles tz-aware), ROC calculation, KPIs, charts, and alerts
|
| 10 |
-
- Research prototype — not medical advice
|
| 11 |
-
"""
|
| 12 |
-
from __future__ import annotations
|
| 13 |
-
|
| 14 |
-
import math
|
| 15 |
-
import os
|
| 16 |
-
import inspect
|
| 17 |
-
from dataclasses import dataclass
|
| 18 |
-
from typing import Dict, Tuple, Optional, Callable
|
| 19 |
-
|
| 20 |
-
import numpy as np
|
| 21 |
-
import pandas as pd
|
| 22 |
-
import streamlit as st
|
| 23 |
-
|
| 24 |
-
# ------------------------------ Sundew import (tolerant) ------------------------------
|
| 25 |
-
try:
|
| 26 |
-
from sundew import SundewAlgorithm # provided by sundew-algorithms
|
| 27 |
-
_HAS_SUNDEW = True
|
| 28 |
-
except Exception:
|
| 29 |
-
SundewAlgorithm = None # type: ignore
|
| 30 |
-
_HAS_SUNDEW = False
|
| 31 |
-
|
| 32 |
-
# ------------------------------ Optional model backends ------------------------------
|
| 33 |
-
_HAS_XGB = False
|
| 34 |
-
try:
|
| 35 |
-
import xgboost as xgb # type: ignore
|
| 36 |
-
_HAS_XGB = True
|
| 37 |
-
except Exception:
|
| 38 |
-
pass
|
| 39 |
-
|
| 40 |
-
_HAS_TORCH = False
|
| 41 |
-
try:
|
| 42 |
-
import torch # type: ignore
|
| 43 |
-
_HAS_TORCH = True
|
| 44 |
-
except Exception:
|
| 45 |
-
pass
|
| 46 |
-
|
| 47 |
-
_HAS_ONNX = False
|
| 48 |
-
try:
|
| 49 |
-
import onnxruntime as ort # type: ignore
|
| 50 |
-
_HAS_ONNX = True
|
| 51 |
-
except Exception:
|
| 52 |
-
pass
|
| 53 |
-
|
| 54 |
-
# ------------------------------ Translation utils ------------------------------
|
| 55 |
-
import requests
|
| 56 |
-
from deep_translator import GoogleTranslator
|
| 57 |
-
|
| 58 |
-
DT_KEY = os.getenv("DEEPTRANSLATE_API_KEY", "").strip()
|
| 59 |
-
DT_ENDPOINT = os.getenv(
|
| 60 |
-
"DEEPTRANSLATE_ENDPOINT",
|
| 61 |
-
"https://deep-translate1.p.rapidapi.com/language/translate/v2",
|
| 62 |
-
).strip()
|
| 63 |
-
|
| 64 |
-
@st.cache_data(show_spinner=False)
|
| 65 |
-
def _translate_deeptranslate(text: str, target_lang: str, source_lang: str = "en") -> str:
|
| 66 |
-
"""Translate via DeepTranslate (RapidAPI-style). Caches results."""
|
| 67 |
-
if not DT_KEY:
|
| 68 |
-
raise RuntimeError("Missing DEEPTRANSLATE_API_KEY")
|
| 69 |
-
headers = {
|
| 70 |
-
"content-type": "application/json",
|
| 71 |
-
"X-RapidAPI-Key": DT_KEY,
|
| 72 |
-
"X-RapidAPI-Host": "deep-translate1.p.rapidapi.com",
|
| 73 |
-
}
|
| 74 |
-
payload = {"q": text, "source": source_lang, "target": target_lang}
|
| 75 |
-
r = requests.post(DT_ENDPOINT, json=payload, headers=headers, timeout=10)
|
| 76 |
-
r.raise_for_status()
|
| 77 |
-
data = r.json()
|
| 78 |
-
return data.get("data", {}).get("translations", {}).get("translatedText", text)
|
| 79 |
-
|
| 80 |
-
@st.cache_data(show_spinner=False)
|
| 81 |
-
def _translate_fallback(text: str, target_lang: str, source_lang: str = "en") -> str:
|
| 82 |
-
"""Fallback using deep_translator (Google)."""
|
| 83 |
-
try:
|
| 84 |
-
return GoogleTranslator(source=source_lang, target=target_lang).translate(text)
|
| 85 |
-
except Exception:
|
| 86 |
-
return text
|
| 87 |
-
|
| 88 |
-
_translation_cache: Dict[Tuple[str, str], str] = {}
|
| 89 |
-
|
| 90 |
-
def tr(text: str, target_lang: str, source_lang: str = "en") -> str:
|
| 91 |
-
"""Translate with DeepTranslate if key set, else fallback, with an in-session cache."""
|
| 92 |
-
key = (text, target_lang)
|
| 93 |
-
if key in _translation_cache:
|
| 94 |
-
return _translation_cache[key]
|
| 95 |
-
if target_lang.lower() in ("en", "eng", "english"):
|
| 96 |
-
_translation_cache[key] = text
|
| 97 |
-
return text
|
| 98 |
-
try:
|
| 99 |
-
out = _translate_deeptranslate(text, target_lang, source_lang)
|
| 100 |
-
except Exception:
|
| 101 |
-
out = _translate_fallback(text, target_lang, source_lang)
|
| 102 |
-
_translation_cache[key] = out
|
| 103 |
-
return out
|
| 104 |
-
|
| 105 |
-
LANGS = {
|
| 106 |
-
"English": "en",
|
| 107 |
-
"Français (French)": "fr",
|
| 108 |
-
"Kiswahili (Swahili)": "sw",
|
| 109 |
-
"Hausa": "ha",
|
| 110 |
-
}
|
| 111 |
-
|
| 112 |
-
# ------------------------------ Sundew wrapper (v0.6 + v0.7) ------------------------------
|
| 113 |
-
@dataclass
|
| 114 |
-
class SundewGate:
|
| 115 |
-
target_activation: float = 0.25
|
| 116 |
-
temperature: float = 0.08
|
| 117 |
-
mode: str = "tuned_v2"
|
| 118 |
-
|
| 119 |
-
def __post_init__(self):
|
| 120 |
-
self.sd = None
|
| 121 |
-
if _HAS_SUNDEW and SundewAlgorithm is not None:
|
| 122 |
-
cfg = {
|
| 123 |
-
"target_activation": self.target_activation,
|
| 124 |
-
"temperature": self.temperature,
|
| 125 |
-
"mode": self.mode,
|
| 126 |
-
}
|
| 127 |
-
try:
|
| 128 |
-
sig = inspect.signature(SundewAlgorithm)
|
| 129 |
-
if "config" in sig.parameters:
|
| 130 |
-
# 0.7.x style
|
| 131 |
-
try:
|
| 132 |
-
self.sd = SundewAlgorithm(config=cfg)
|
| 133 |
-
except TypeError:
|
| 134 |
-
self.sd = SundewAlgorithm(cfg) # positional
|
| 135 |
-
else:
|
| 136 |
-
# 0.6.x style kwargs
|
| 137 |
-
self.sd = SundewAlgorithm(
|
| 138 |
-
target_activation=self.target_activation,
|
| 139 |
-
temperature=self.temperature,
|
| 140 |
-
mode=self.mode,
|
| 141 |
-
)
|
| 142 |
-
except Exception:
|
| 143 |
-
pass
|
| 144 |
-
# try factory helpers if constructor failed
|
| 145 |
-
if self.sd is None:
|
| 146 |
-
for factory in ("from_config", "create", "build"):
|
| 147 |
-
if hasattr(SundewAlgorithm, factory):
|
| 148 |
-
try:
|
| 149 |
-
self.sd = getattr(SundewAlgorithm, factory)(cfg)
|
| 150 |
-
break
|
| 151 |
-
except Exception:
|
| 152 |
-
continue
|
| 153 |
-
|
| 154 |
-
# fallback gate state (keeps app usable even if Sundew not available)
|
| 155 |
-
self._tau = 0.5
|
| 156 |
-
self._ema = 0.0
|
| 157 |
-
self._alpha = 0.02 # EMA smoothing
|
| 158 |
-
|
| 159 |
-
def decide(self, score: float) -> bool:
|
| 160 |
-
score = float(max(0.0, min(1.0, score)))
|
| 161 |
-
if self.sd is not None:
|
| 162 |
-
for method_name in ("decide", "step", "open"):
|
| 163 |
-
if hasattr(self.sd, method_name):
|
| 164 |
-
try:
|
| 165 |
-
return bool(getattr(self.sd, method_name)(score))
|
| 166 |
-
except Exception:
|
| 167 |
-
pass
|
| 168 |
-
# fallback stochastic logistic gate targeting activation rate
|
| 169 |
-
p_open = 1.0 / (1.0 + math.exp(-(score - self._tau) / max(1e-6, self.temperature)))
|
| 170 |
-
fired = np.random.rand() < p_open
|
| 171 |
-
self._ema = (1 - self._alpha) * self._ema + self._alpha * (1.0 if fired else 0.0)
|
| 172 |
-
self._tau += 0.01 * (self.target_activation - self._ema)
|
| 173 |
-
self._tau = min(0.95, max(0.05, self._tau))
|
| 174 |
-
return fired
|
| 175 |
-
|
| 176 |
-
# ------------------------------ Risk scoring ------------------------------
|
| 177 |
-
def compute_lightweight_score(row: pd.Series) -> float:
|
| 178 |
-
"""Heuristic risk proxy in [0,1] using glucose, rate-of-change, insulin, carbs, heart rate."""
|
| 179 |
-
g = float(row.get("glucose_mgdl", np.nan))
|
| 180 |
-
roc = float(row.get("roc_mgdl_min", 0.0))
|
| 181 |
-
insulin = float(row.get("insulin_units", 0.0))
|
| 182 |
-
carbs = float(row.get("carbs_g", 0.0))
|
| 183 |
-
hr = float(row.get("hr", 0.0))
|
| 184 |
-
|
| 185 |
-
low_gap = max(0.0, 80 - g)
|
| 186 |
-
high_gap = max(0.0, g - 140)
|
| 187 |
-
base = (low_gap + high_gap) / 120.0 # ~[0,1]
|
| 188 |
-
|
| 189 |
-
roc_term = min(1.0, abs(roc) / 3.0) # 3 mg/dL/min ~ strong trend
|
| 190 |
-
insulin_term = min(1.0, insulin / 6.0) * (1.0 if roc < -0.5 else 0.3)
|
| 191 |
-
carbs_term = min(1.0, carbs / 50.0) * (1.0 if roc > 0.5 else 0.3)
|
| 192 |
-
activity_term = min(1.0, max(0.0, hr - 100) / 60.0) * (1.0 if insulin > 0.5 else 0.2)
|
| 193 |
-
|
| 194 |
-
score = base + 0.7 * roc_term + 0.5 * insulin_term + 0.4 * carbs_term + 0.3 * activity_term
|
| 195 |
-
return float(max(0.0, min(1.0, score)))
|
| 196 |
-
|
| 197 |
-
# ------------------------------ Heavy model backends ------------------------------
|
| 198 |
-
def build_demo_model(df: pd.DataFrame):
|
| 199 |
-
"""Session-trained logistic regression demo model (portable)."""
|
| 200 |
-
from sklearn.linear_model import LogisticRegression
|
| 201 |
-
from sklearn.preprocessing import StandardScaler
|
| 202 |
-
from sklearn.pipeline import Pipeline
|
| 203 |
-
|
| 204 |
-
model = Pipeline([("scaler", StandardScaler()), ("clf", LogisticRegression(max_iter=1000))])
|
| 205 |
-
tmp = df.copy()
|
| 206 |
-
# label: 30-min ahead hypo (<70) OR hyper (>180)
|
| 207 |
-
tmp["future_glucose"] = tmp["glucose_mgdl"].shift(-6) # assuming 5-min cadence
|
| 208 |
-
tmp["label"] = ((tmp["future_glucose"] < 70) | (tmp["future_glucose"] > 180)).astype(int)
|
| 209 |
-
tmp = tmp.dropna(subset=["label"]).copy()
|
| 210 |
-
|
| 211 |
-
X = tmp[["glucose_mgdl", "roc_mgdl_min", "insulin_units", "carbs_g", "hr"]].fillna(0.0).values
|
| 212 |
-
y = tmp["label"].values
|
| 213 |
-
if len(np.unique(y)) < 2:
|
| 214 |
-
# ensure fit works even with degenerate labels
|
| 215 |
-
y = np.array([0, 1] * (len(X) // 2 + 1))[: len(X)]
|
| 216 |
-
model.fit(X, y)
|
| 217 |
-
def _predict(Xarr: np.ndarray) -> float:
|
| 218 |
-
try:
|
| 219 |
-
return float(model.predict_proba(Xarr)[0, 1])
|
| 220 |
-
except Exception:
|
| 221 |
-
return float(model.predict(Xarr)[0])
|
| 222 |
-
return _predict
|
| 223 |
-
|
| 224 |
-
def load_xgb_predictor(file_bytes: bytes) -> Callable[[np.ndarray], float]:
|
| 225 |
-
if not _HAS_XGB:
|
| 226 |
-
raise RuntimeError("XGBoost not installed in this environment.")
|
| 227 |
-
import tempfile
|
| 228 |
-
with tempfile.NamedTemporaryFile(suffix=".json", delete=False) as f:
|
| 229 |
-
f.write(file_bytes)
|
| 230 |
-
path = f.name
|
| 231 |
-
booster = xgb.XGBClassifier()
|
| 232 |
-
booster.load_model(path)
|
| 233 |
-
def _predict(Xarr: np.ndarray) -> float:
|
| 234 |
-
return float(booster.predict_proba(Xarr)[0, 1])
|
| 235 |
-
return _predict
|
| 236 |
-
|
| 237 |
-
def load_torch_predictor(file_bytes: bytes) -> Callable[[np.ndarray], float]:
|
| 238 |
-
if not _HAS_TORCH:
|
| 239 |
-
raise RuntimeError("PyTorch not installed in this environment.")
|
| 240 |
-
import io
|
| 241 |
-
model = torch.jit.load(io.BytesIO(file_bytes), map_location="cpu")
|
| 242 |
-
model.eval()
|
| 243 |
-
@torch.no_grad()
|
| 244 |
-
def _predict(Xarr: np.ndarray) -> float:
|
| 245 |
-
t = torch.tensor(Xarr, dtype=torch.float32)
|
| 246 |
-
out = model(t)
|
| 247 |
-
# accept logits or probabilities
|
| 248 |
-
if out.ndim == 2 and out.shape[1] == 1:
|
| 249 |
-
out = out.squeeze(1)
|
| 250 |
-
out = torch.sigmoid(out) if (out.ndim == 1 or out.shape[1] == 1) else torch.softmax(out, dim=1)[:, 1]
|
| 251 |
-
return float(out[0].cpu().item())
|
| 252 |
-
return _predict
|
| 253 |
-
|
| 254 |
-
def load_onnx_predictor(file_bytes: bytes) -> Callable[[np.ndarray], float]:
|
| 255 |
-
if not _HAS_ONNX:
|
| 256 |
-
raise RuntimeError("onnxruntime not installed in this environment.")
|
| 257 |
-
import tempfile
|
| 258 |
-
with tempfile.NamedTemporaryFile(suffix=".onnx", delete=False) as f:
|
| 259 |
-
f.write(file_bytes)
|
| 260 |
-
path = f.name
|
| 261 |
-
sess = ort.InferenceSession(path, providers=["CPUExecutionProvider"])
|
| 262 |
-
input_name = sess.get_inputs()[0].name
|
| 263 |
-
def _predict(Xarr: np.ndarray) -> float:
|
| 264 |
-
y = sess.run(None, {input_name: Xarr.astype(np.float32)})[0]
|
| 265 |
-
if y.ndim == 2 and y.shape[1] == 2:
|
| 266 |
-
return float(y[0, 1])
|
| 267 |
-
if y.ndim == 2 and y.shape[1] == 1:
|
| 268 |
-
return float(y[0, 0])
|
| 269 |
-
return float(np.ravel(y)[0])
|
| 270 |
-
return _predict
|
| 271 |
-
|
| 272 |
-
# ------------------------------ Streamlit UI ------------------------------
|
| 273 |
-
st.set_page_config(page_title="Sundew Diabetes Watch", layout="wide")
|
| 274 |
-
|
| 275 |
-
# Language selector
|
| 276 |
-
lang_name = st.sidebar.selectbox("Language / Lugha / Taal / Harshe", list(LANGS.keys()), index=0)
|
| 277 |
-
LANG = LANGS[lang_name]
|
| 278 |
-
T = lambda s: tr(s, LANG, "en")
|
| 279 |
-
|
| 280 |
-
st.title("🌿 " + T("Sundew Diabetes Watch"))
|
| 281 |
-
st.caption(T("Energy-aware selective activation for diabetes monitoring — research demo (not medical advice)."))
|
| 282 |
-
|
| 283 |
-
# File upload / controls
|
| 284 |
-
left, right = st.columns([2, 1])
|
| 285 |
-
with left:
|
| 286 |
-
uploaded = st.file_uploader(
|
| 287 |
-
T("Upload CGM CSV (timestamp, glucose_mgdl, carbs_g, insulin_units, steps, hr)"),
|
| 288 |
-
type=["csv"],
|
| 289 |
-
)
|
| 290 |
-
use_synth = st.checkbox(T("Use synthetic example if no file uploaded"), value=True)
|
| 291 |
-
with right:
|
| 292 |
-
target_activation = st.slider(T("Target heavy-activation rate"), 0.05, 0.9, 0.25, 0.01)
|
| 293 |
-
temperature = st.slider(T("Gate temperature"), 0.02, 0.5, 0.08, 0.01)
|
| 294 |
-
mode = st.selectbox(T("Sundew mode"), ["tuned_v2", "conservative", "aggressive", "auto_tuned"], index=0)
|
| 295 |
-
|
| 296 |
-
# Backend selector with stable internal keys
|
| 297 |
-
backend_options = [
|
| 298 |
-
("demo", T("Demo (Logistic Regression)")),
|
| 299 |
-
("xgb", "XGBoost"),
|
| 300 |
-
("torch", "PyTorch"),
|
| 301 |
-
("onnx", "ONNX"),
|
| 302 |
-
]
|
| 303 |
-
backend_label = st.sidebar.selectbox(T("Model backend"), [lbl for _, lbl in backend_options], index=0)
|
| 304 |
-
BACKEND_KEY = next(k for k, lbl in backend_options if lbl == backend_label)
|
| 305 |
-
|
| 306 |
-
model_file = None
|
| 307 |
-
if BACKEND_KEY in ("xgb", "torch", "onnx"):
|
| 308 |
-
model_file = st.sidebar.file_uploader(T("Upload trained model file"), type=["json", "bin", "pt", "pth", "onnx"], key="model")
|
| 309 |
-
|
| 310 |
-
# ------------------------------ Load/synthesize data ------------------------------
|
| 311 |
-
if uploaded is not None:
|
| 312 |
-
df = pd.read_csv(uploaded)
|
| 313 |
-
else:
|
| 314 |
-
if not use_synth:
|
| 315 |
-
st.stop()
|
| 316 |
-
rng = np.random.default_rng(7)
|
| 317 |
-
n = 600 # ~50 hours if 5-min cadence
|
| 318 |
-
t0 = pd.Timestamp.utcnow().floor("min")
|
| 319 |
-
times = [t0 + pd.Timedelta(minutes=5 * i) for i in range(n)]
|
| 320 |
-
base = 120 + 25 * np.sin(np.linspace(0, 10 * np.pi, n))
|
| 321 |
-
noise = rng.normal(0, 10, n)
|
| 322 |
-
meals = (rng.random(n) < 0.04).astype(float) * rng.normal(45, 15, n).clip(0, 120)
|
| 323 |
-
insulin = (rng.random(n) < 0.03).astype(float) * rng.normal(4, 1.2, n).clip(0, 8)
|
| 324 |
-
steps = rng.integers(0, 150, size=n)
|
| 325 |
-
hr = 70 + (steps > 80) * rng.integers(30, 60, size=n)
|
| 326 |
-
glucose = base + noise + 0.3 * meals - 0.8 * insulin
|
| 327 |
-
df = pd.DataFrame(
|
| 328 |
-
{
|
| 329 |
-
"timestamp": times,
|
| 330 |
-
"glucose_mgdl": np.round(glucose, 1),
|
| 331 |
-
"carbs_g": np.round(meals, 1),
|
| 332 |
-
"insulin_units": np.round(insulin, 1),
|
| 333 |
-
"steps": steps,
|
| 334 |
-
"hr": hr,
|
| 335 |
-
}
|
| 336 |
-
)
|
| 337 |
-
|
| 338 |
-
# Robust timestamp parsing (handles tz-aware, strings, epoch)
|
| 339 |
-
from pandas.api.types import is_datetime64_any_dtype
|
| 340 |
-
if "timestamp" not in df.columns:
|
| 341 |
-
st.error(T("CSV must include a 'timestamp' column."))
|
| 342 |
-
st.stop()
|
| 343 |
-
|
| 344 |
-
if not is_datetime64_any_dtype(df["timestamp"]):
|
| 345 |
-
df["timestamp"] = pd.to_datetime(df["timestamp"], utc=True, errors="coerce")
|
| 346 |
-
|
| 347 |
-
# Localize if naive
|
| 348 |
-
if getattr(df["timestamp"].dt, "tz", None) is None:
|
| 349 |
-
df["timestamp"] = df["timestamp"].dt.tz_localize("UTC")
|
| 350 |
-
|
| 351 |
-
df = df.sort_values("timestamp").reset_index(drop=True)
|
| 352 |
-
|
| 353 |
-
# Rate-of-change mg/dL per minute
|
| 354 |
-
df["dt_min"] = df["timestamp"].diff().dt.total_seconds() / 60.0
|
| 355 |
-
df["glucose_prev"] = df["glucose_mgdl"].shift(1)
|
| 356 |
-
df["roc_mgdl_min"] = (df["glucose_mgdl"] - df["glucose_prev"]) / df["dt_min"]
|
| 357 |
-
df["roc_mgdl_min"] = df["roc_mgdl_min"].replace([np.inf, -np.inf], 0.0).fillna(0.0)
|
| 358 |
-
|
| 359 |
-
# ------------------------------ Heavy predictor selection ------------------------------
|
| 360 |
-
predict_proba: Optional[Callable[[np.ndarray], float]] = None
|
| 361 |
-
header_note = ""
|
| 362 |
-
|
| 363 |
-
if BACKEND_KEY == "demo":
|
| 364 |
-
predict_proba = build_demo_model(df)
|
| 365 |
-
header_note = T("Demo model trains per session for portability.")
|
| 366 |
-
elif BACKEND_KEY == "xgb" and model_file is not None:
|
| 367 |
-
try:
|
| 368 |
-
predict_proba = load_xgb_predictor(model_file.read())
|
| 369 |
-
header_note = T("XGBoost model loaded from file.")
|
| 370 |
-
except Exception as e:
|
| 371 |
-
st.warning(T("Could not load XGBoost model; falling back to Demo."))
|
| 372 |
-
predict_proba = build_demo_model(df)
|
| 373 |
-
header_note = T("Demo model used (no external file).")
|
| 374 |
-
elif BACKEND_KEY == "torch" and model_file is not None:
|
| 375 |
-
try:
|
| 376 |
-
predict_proba = load_torch_predictor(model_file.read())
|
| 377 |
-
header_note = T("PyTorch TorchScript model loaded.")
|
| 378 |
-
except Exception:
|
| 379 |
-
st.warning(T("Could not load PyTorch model; falling back to Demo."))
|
| 380 |
-
predict_proba = build_demo_model(df)
|
| 381 |
-
header_note = T("Demo model used (no external file).")
|
| 382 |
-
elif BACKEND_KEY == "onnx" and model_file is not None:
|
| 383 |
-
try:
|
| 384 |
-
predict_proba = load_onnx_predictor(model_file.read())
|
| 385 |
-
header_note = T("ONNX model loaded via onnxruntime.")
|
| 386 |
-
except Exception:
|
| 387 |
-
st.warning(T("Could not load ONNX model; falling back to Demo."))
|
| 388 |
-
predict_proba = build_demo_model(df)
|
| 389 |
-
header_note = T("Demo model used (no external file).")
|
| 390 |
-
else:
|
| 391 |
-
st.warning(T("Selected backend requires a model file. Falling back to Demo."))
|
| 392 |
-
predict_proba = build_demo_model(df)
|
| 393 |
-
header_note = T("Demo model used (no external file).")
|
| 394 |
-
|
| 395 |
-
st.info(header_note)
|
| 396 |
-
|
| 397 |
-
# ------------------------------ Gate + streaming loop ------------------------------
|
| 398 |
-
gate = SundewGate(target_activation=target_activation, temperature=temperature, mode=mode)
|
| 399 |
-
|
| 400 |
-
def make_X(row: pd.Series) -> np.ndarray:
|
| 401 |
-
return np.array(
|
| 402 |
-
[
|
| 403 |
-
[
|
| 404 |
-
row.get("glucose_mgdl", 0.0),
|
| 405 |
-
row.get("roc_mgdl_min", 0.0),
|
| 406 |
-
row.get("insulin_units", 0.0),
|
| 407 |
-
row.get("carbs_g", 0.0),
|
| 408 |
-
row.get("hr", 0.0),
|
| 409 |
-
]
|
| 410 |
-
],
|
| 411 |
-
dtype=np.float32,
|
| 412 |
-
)
|
| 413 |
-
|
| 414 |
-
records = []
|
| 415 |
-
alerts = []
|
| 416 |
-
for _, row in df.iterrows():
|
| 417 |
-
score = compute_lightweight_score(row)
|
| 418 |
-
open_gate = gate.decide(score)
|
| 419 |
-
decision = "SKIP"
|
| 420 |
-
proba = None
|
| 421 |
-
if open_gate and predict_proba is not None:
|
| 422 |
-
X = make_X(row)
|
| 423 |
-
try:
|
| 424 |
-
proba = float(predict_proba(X))
|
| 425 |
-
except Exception:
|
| 426 |
-
proba = None
|
| 427 |
-
decision = "RUN"
|
| 428 |
-
if proba is not None and proba >= 0.6:
|
| 429 |
-
alerts.append(
|
| 430 |
-
{
|
| 431 |
-
"timestamp": row["timestamp"],
|
| 432 |
-
"glucose": row["glucose_mgdl"],
|
| 433 |
-
"risk_proba": proba,
|
| 434 |
-
"note": T("⚠ Elevated 30-min risk — please check CGM and plan carbs/insulin."),
|
| 435 |
-
}
|
| 436 |
-
)
|
| 437 |
-
records.append(
|
| 438 |
-
{
|
| 439 |
-
"timestamp": row["timestamp"],
|
| 440 |
-
"glucose": row["glucose_mgdl"],
|
| 441 |
-
"roc": row["roc_mgdl_min"],
|
| 442 |
-
"score": score,
|
| 443 |
-
"gate": decision,
|
| 444 |
-
"risk_proba": proba,
|
| 445 |
-
}
|
| 446 |
-
)
|
| 447 |
-
|
| 448 |
-
out = pd.DataFrame(records)
|
| 449 |
-
events = len(out)
|
| 450 |
-
activations = int((out["gate"] == "RUN").sum())
|
| 451 |
-
rate = activations / max(events, 1)
|
| 452 |
-
|
| 453 |
-
c1, c2, c3 = st.columns(3)
|
| 454 |
-
c1.metric(T("Events"), f"{events}")
|
| 455 |
-
c2.metric(T("Heavy activations"), f"{activations}")
|
| 456 |
-
c3.metric(T("Activation rate"), f"{rate:.2%}")
|
| 457 |
-
|
| 458 |
-
st.line_chart(out.set_index("timestamp")["glucose"], height=220)
|
| 459 |
-
st.line_chart(out.set_index("timestamp")["score"], height=220)
|
| 460 |
-
|
| 461 |
-
st.subheader(T("Decisions (tail)"))
|
| 462 |
-
st.dataframe(out.tail(50))
|
| 463 |
-
|
| 464 |
-
st.subheader(T("Alerts"))
|
| 465 |
-
if alerts:
|
| 466 |
-
st.dataframe(pd.DataFrame(alerts))
|
| 467 |
-
else:
|
| 468 |
-
st.info(T("No high-risk alerts triggered in this window."))
|
| 469 |
-
|
| 470 |
-
# Footer: show Sundew version & engine status
|
| 471 |
-
try:
|
| 472 |
-
from importlib.metadata import version as _ver
|
| 473 |
-
_sundew_ver = _ver("sundew-algorithms")
|
| 474 |
-
except Exception:
|
| 475 |
-
_sundew_ver = "unknown"
|
| 476 |
-
|
| 477 |
-
engine_txt = f"sundew-algorithms {_sundew_ver}" if _HAS_SUNDEW else T("fallback gate (install sundew-algorithms)")
|
| 478 |
-
st.caption(T("Engine: ") + engine_txt)
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Sundew Diabetes Watch — Streamlit App (multilingual, model backends, Sundew v0.6/v0.7 compatible)
|
| 5 |
+
|
| 6 |
+
- Multilingual UI: English, French, Swahili, Hausa (DeepTranslate API or deep_translator fallback)
|
| 7 |
+
- Model backends: Demo(LogReg), XGBoost(.json), PyTorch TorchScript(.pt/.pth), ONNX(.onnx)
|
| 8 |
+
- Sundew selective-activation gate with compatibility wrapper across package versions
|
| 9 |
+
- Robust timestamp parsing (handles tz-aware), ROC calculation, KPIs, charts, and alerts
|
| 10 |
+
- Research prototype — not medical advice
|
| 11 |
+
"""
|
| 12 |
+
from __future__ import annotations
|
| 13 |
+
|
| 14 |
+
import math
|
| 15 |
+
import os
|
| 16 |
+
import inspect
|
| 17 |
+
from dataclasses import dataclass
|
| 18 |
+
from typing import Dict, Tuple, Optional, Callable
|
| 19 |
+
|
| 20 |
+
import numpy as np
|
| 21 |
+
import pandas as pd
|
| 22 |
+
import streamlit as st
|
| 23 |
+
|
| 24 |
+
# ------------------------------ Sundew import (tolerant) ------------------------------
|
| 25 |
+
try:
|
| 26 |
+
from sundew import SundewAlgorithm # provided by sundew-algorithms
|
| 27 |
+
_HAS_SUNDEW = True
|
| 28 |
+
except Exception:
|
| 29 |
+
SundewAlgorithm = None # type: ignore
|
| 30 |
+
_HAS_SUNDEW = False
|
| 31 |
+
|
| 32 |
+
# ------------------------------ Optional model backends ------------------------------
|
| 33 |
+
_HAS_XGB = False
|
| 34 |
+
try:
|
| 35 |
+
import xgboost as xgb # type: ignore
|
| 36 |
+
_HAS_XGB = True
|
| 37 |
+
except Exception:
|
| 38 |
+
pass
|
| 39 |
+
|
| 40 |
+
_HAS_TORCH = False
|
| 41 |
+
try:
|
| 42 |
+
import torch # type: ignore
|
| 43 |
+
_HAS_TORCH = True
|
| 44 |
+
except Exception:
|
| 45 |
+
pass
|
| 46 |
+
|
| 47 |
+
_HAS_ONNX = False
|
| 48 |
+
try:
|
| 49 |
+
import onnxruntime as ort # type: ignore
|
| 50 |
+
_HAS_ONNX = True
|
| 51 |
+
except Exception:
|
| 52 |
+
pass
|
| 53 |
+
|
| 54 |
+
# ------------------------------ Translation utils ------------------------------
|
| 55 |
+
import requests
|
| 56 |
+
from deep_translator import GoogleTranslator
|
| 57 |
+
|
| 58 |
+
DT_KEY = os.getenv("DEEPTRANSLATE_API_KEY", "").strip()
|
| 59 |
+
DT_ENDPOINT = os.getenv(
|
| 60 |
+
"DEEPTRANSLATE_ENDPOINT",
|
| 61 |
+
"https://deep-translate1.p.rapidapi.com/language/translate/v2",
|
| 62 |
+
).strip()
|
| 63 |
+
|
| 64 |
+
@st.cache_data(show_spinner=False)
|
| 65 |
+
def _translate_deeptranslate(text: str, target_lang: str, source_lang: str = "en") -> str:
|
| 66 |
+
"""Translate via DeepTranslate (RapidAPI-style). Caches results."""
|
| 67 |
+
if not DT_KEY:
|
| 68 |
+
raise RuntimeError("Missing DEEPTRANSLATE_API_KEY")
|
| 69 |
+
headers = {
|
| 70 |
+
"content-type": "application/json",
|
| 71 |
+
"X-RapidAPI-Key": DT_KEY,
|
| 72 |
+
"X-RapidAPI-Host": "deep-translate1.p.rapidapi.com",
|
| 73 |
+
}
|
| 74 |
+
payload = {"q": text, "source": source_lang, "target": target_lang}
|
| 75 |
+
r = requests.post(DT_ENDPOINT, json=payload, headers=headers, timeout=10)
|
| 76 |
+
r.raise_for_status()
|
| 77 |
+
data = r.json()
|
| 78 |
+
return data.get("data", {}).get("translations", {}).get("translatedText", text)
|
| 79 |
+
|
| 80 |
+
@st.cache_data(show_spinner=False)
|
| 81 |
+
def _translate_fallback(text: str, target_lang: str, source_lang: str = "en") -> str:
|
| 82 |
+
"""Fallback using deep_translator (Google)."""
|
| 83 |
+
try:
|
| 84 |
+
return GoogleTranslator(source=source_lang, target=target_lang).translate(text)
|
| 85 |
+
except Exception:
|
| 86 |
+
return text
|
| 87 |
+
|
| 88 |
+
_translation_cache: Dict[Tuple[str, str], str] = {}
|
| 89 |
+
|
| 90 |
+
def tr(text: str, target_lang: str, source_lang: str = "en") -> str:
|
| 91 |
+
"""Translate with DeepTranslate if key set, else fallback, with an in-session cache."""
|
| 92 |
+
key = (text, target_lang)
|
| 93 |
+
if key in _translation_cache:
|
| 94 |
+
return _translation_cache[key]
|
| 95 |
+
if target_lang.lower() in ("en", "eng", "english"):
|
| 96 |
+
_translation_cache[key] = text
|
| 97 |
+
return text
|
| 98 |
+
try:
|
| 99 |
+
out = _translate_deeptranslate(text, target_lang, source_lang)
|
| 100 |
+
except Exception:
|
| 101 |
+
out = _translate_fallback(text, target_lang, source_lang)
|
| 102 |
+
_translation_cache[key] = out
|
| 103 |
+
return out
|
| 104 |
+
|
| 105 |
+
LANGS = {
|
| 106 |
+
"English": "en",
|
| 107 |
+
"Français (French)": "fr",
|
| 108 |
+
"Kiswahili (Swahili)": "sw",
|
| 109 |
+
"Hausa": "ha",
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
# ------------------------------ Sundew wrapper (v0.6 + v0.7) ------------------------------
|
| 113 |
+
@dataclass
|
| 114 |
+
class SundewGate:
|
| 115 |
+
target_activation: float = 0.25
|
| 116 |
+
temperature: float = 0.08
|
| 117 |
+
mode: str = "tuned_v2"
|
| 118 |
+
|
| 119 |
+
def __post_init__(self):
|
| 120 |
+
self.sd = None
|
| 121 |
+
if _HAS_SUNDEW and SundewAlgorithm is not None:
|
| 122 |
+
cfg = {
|
| 123 |
+
"target_activation": self.target_activation,
|
| 124 |
+
"temperature": self.temperature,
|
| 125 |
+
"mode": self.mode,
|
| 126 |
+
}
|
| 127 |
+
try:
|
| 128 |
+
sig = inspect.signature(SundewAlgorithm)
|
| 129 |
+
if "config" in sig.parameters:
|
| 130 |
+
# 0.7.x style
|
| 131 |
+
try:
|
| 132 |
+
self.sd = SundewAlgorithm(config=cfg)
|
| 133 |
+
except TypeError:
|
| 134 |
+
self.sd = SundewAlgorithm(cfg) # positional
|
| 135 |
+
else:
|
| 136 |
+
# 0.6.x style kwargs
|
| 137 |
+
self.sd = SundewAlgorithm(
|
| 138 |
+
target_activation=self.target_activation,
|
| 139 |
+
temperature=self.temperature,
|
| 140 |
+
mode=self.mode,
|
| 141 |
+
)
|
| 142 |
+
except Exception:
|
| 143 |
+
pass
|
| 144 |
+
# try factory helpers if constructor failed
|
| 145 |
+
if self.sd is None:
|
| 146 |
+
for factory in ("from_config", "create", "build"):
|
| 147 |
+
if hasattr(SundewAlgorithm, factory):
|
| 148 |
+
try:
|
| 149 |
+
self.sd = getattr(SundewAlgorithm, factory)(cfg)
|
| 150 |
+
break
|
| 151 |
+
except Exception:
|
| 152 |
+
continue
|
| 153 |
+
|
| 154 |
+
# fallback gate state (keeps app usable even if Sundew not available)
|
| 155 |
+
self._tau = 0.5
|
| 156 |
+
self._ema = 0.0
|
| 157 |
+
self._alpha = 0.02 # EMA smoothing
|
| 158 |
+
|
| 159 |
+
def decide(self, score: float) -> bool:
|
| 160 |
+
score = float(max(0.0, min(1.0, score)))
|
| 161 |
+
if self.sd is not None:
|
| 162 |
+
for method_name in ("decide", "step", "open"):
|
| 163 |
+
if hasattr(self.sd, method_name):
|
| 164 |
+
try:
|
| 165 |
+
return bool(getattr(self.sd, method_name)(score))
|
| 166 |
+
except Exception:
|
| 167 |
+
pass
|
| 168 |
+
# fallback stochastic logistic gate targeting activation rate
|
| 169 |
+
p_open = 1.0 / (1.0 + math.exp(-(score - self._tau) / max(1e-6, self.temperature)))
|
| 170 |
+
fired = np.random.rand() < p_open
|
| 171 |
+
self._ema = (1 - self._alpha) * self._ema + self._alpha * (1.0 if fired else 0.0)
|
| 172 |
+
self._tau += 0.01 * (self.target_activation - self._ema)
|
| 173 |
+
self._tau = min(0.95, max(0.05, self._tau))
|
| 174 |
+
return fired
|
| 175 |
+
|
| 176 |
+
# ------------------------------ Risk scoring ------------------------------
|
| 177 |
+
def compute_lightweight_score(row: pd.Series) -> float:
|
| 178 |
+
"""Heuristic risk proxy in [0,1] using glucose, rate-of-change, insulin, carbs, heart rate."""
|
| 179 |
+
g = float(row.get("glucose_mgdl", np.nan))
|
| 180 |
+
roc = float(row.get("roc_mgdl_min", 0.0))
|
| 181 |
+
insulin = float(row.get("insulin_units", 0.0))
|
| 182 |
+
carbs = float(row.get("carbs_g", 0.0))
|
| 183 |
+
hr = float(row.get("hr", 0.0))
|
| 184 |
+
|
| 185 |
+
low_gap = max(0.0, 80 - g)
|
| 186 |
+
high_gap = max(0.0, g - 140)
|
| 187 |
+
base = (low_gap + high_gap) / 120.0 # ~[0,1]
|
| 188 |
+
|
| 189 |
+
roc_term = min(1.0, abs(roc) / 3.0) # 3 mg/dL/min ~ strong trend
|
| 190 |
+
insulin_term = min(1.0, insulin / 6.0) * (1.0 if roc < -0.5 else 0.3)
|
| 191 |
+
carbs_term = min(1.0, carbs / 50.0) * (1.0 if roc > 0.5 else 0.3)
|
| 192 |
+
activity_term = min(1.0, max(0.0, hr - 100) / 60.0) * (1.0 if insulin > 0.5 else 0.2)
|
| 193 |
+
|
| 194 |
+
score = base + 0.7 * roc_term + 0.5 * insulin_term + 0.4 * carbs_term + 0.3 * activity_term
|
| 195 |
+
return float(max(0.0, min(1.0, score)))
|
| 196 |
+
|
| 197 |
+
# ------------------------------ Heavy model backends ------------------------------
|
| 198 |
+
def build_demo_model(df: pd.DataFrame):
|
| 199 |
+
"""Session-trained logistic regression demo model (portable)."""
|
| 200 |
+
from sklearn.linear_model import LogisticRegression
|
| 201 |
+
from sklearn.preprocessing import StandardScaler
|
| 202 |
+
from sklearn.pipeline import Pipeline
|
| 203 |
+
|
| 204 |
+
model = Pipeline([("scaler", StandardScaler()), ("clf", LogisticRegression(max_iter=1000))])
|
| 205 |
+
tmp = df.copy()
|
| 206 |
+
# label: 30-min ahead hypo (<70) OR hyper (>180)
|
| 207 |
+
tmp["future_glucose"] = tmp["glucose_mgdl"].shift(-6) # assuming 5-min cadence
|
| 208 |
+
tmp["label"] = ((tmp["future_glucose"] < 70) | (tmp["future_glucose"] > 180)).astype(int)
|
| 209 |
+
tmp = tmp.dropna(subset=["label"]).copy()
|
| 210 |
+
|
| 211 |
+
X = tmp[["glucose_mgdl", "roc_mgdl_min", "insulin_units", "carbs_g", "hr"]].fillna(0.0).values
|
| 212 |
+
y = tmp["label"].values
|
| 213 |
+
if len(np.unique(y)) < 2:
|
| 214 |
+
# ensure fit works even with degenerate labels
|
| 215 |
+
y = np.array([0, 1] * (len(X) // 2 + 1))[: len(X)]
|
| 216 |
+
model.fit(X, y)
|
| 217 |
+
def _predict(Xarr: np.ndarray) -> float:
|
| 218 |
+
try:
|
| 219 |
+
return float(model.predict_proba(Xarr)[0, 1])
|
| 220 |
+
except Exception:
|
| 221 |
+
return float(model.predict(Xarr)[0])
|
| 222 |
+
return _predict
|
| 223 |
+
|
| 224 |
+
def load_xgb_predictor(file_bytes: bytes) -> Callable[[np.ndarray], float]:
|
| 225 |
+
if not _HAS_XGB:
|
| 226 |
+
raise RuntimeError("XGBoost not installed in this environment.")
|
| 227 |
+
import tempfile
|
| 228 |
+
with tempfile.NamedTemporaryFile(suffix=".json", delete=False) as f:
|
| 229 |
+
f.write(file_bytes)
|
| 230 |
+
path = f.name
|
| 231 |
+
booster = xgb.XGBClassifier()
|
| 232 |
+
booster.load_model(path)
|
| 233 |
+
def _predict(Xarr: np.ndarray) -> float:
|
| 234 |
+
return float(booster.predict_proba(Xarr)[0, 1])
|
| 235 |
+
return _predict
|
| 236 |
+
|
| 237 |
+
def load_torch_predictor(file_bytes: bytes) -> Callable[[np.ndarray], float]:
|
| 238 |
+
if not _HAS_TORCH:
|
| 239 |
+
raise RuntimeError("PyTorch not installed in this environment.")
|
| 240 |
+
import io
|
| 241 |
+
model = torch.jit.load(io.BytesIO(file_bytes), map_location="cpu")
|
| 242 |
+
model.eval()
|
| 243 |
+
@torch.no_grad()
|
| 244 |
+
def _predict(Xarr: np.ndarray) -> float:
|
| 245 |
+
t = torch.tensor(Xarr, dtype=torch.float32)
|
| 246 |
+
out = model(t)
|
| 247 |
+
# accept logits or probabilities
|
| 248 |
+
if out.ndim == 2 and out.shape[1] == 1:
|
| 249 |
+
out = out.squeeze(1)
|
| 250 |
+
out = torch.sigmoid(out) if (out.ndim == 1 or out.shape[1] == 1) else torch.softmax(out, dim=1)[:, 1]
|
| 251 |
+
return float(out[0].cpu().item())
|
| 252 |
+
return _predict
|
| 253 |
+
|
| 254 |
+
def load_onnx_predictor(file_bytes: bytes) -> Callable[[np.ndarray], float]:
|
| 255 |
+
if not _HAS_ONNX:
|
| 256 |
+
raise RuntimeError("onnxruntime not installed in this environment.")
|
| 257 |
+
import tempfile
|
| 258 |
+
with tempfile.NamedTemporaryFile(suffix=".onnx", delete=False) as f:
|
| 259 |
+
f.write(file_bytes)
|
| 260 |
+
path = f.name
|
| 261 |
+
sess = ort.InferenceSession(path, providers=["CPUExecutionProvider"])
|
| 262 |
+
input_name = sess.get_inputs()[0].name
|
| 263 |
+
def _predict(Xarr: np.ndarray) -> float:
|
| 264 |
+
y = sess.run(None, {input_name: Xarr.astype(np.float32)})[0]
|
| 265 |
+
if y.ndim == 2 and y.shape[1] == 2:
|
| 266 |
+
return float(y[0, 1])
|
| 267 |
+
if y.ndim == 2 and y.shape[1] == 1:
|
| 268 |
+
return float(y[0, 0])
|
| 269 |
+
return float(np.ravel(y)[0])
|
| 270 |
+
return _predict
|
| 271 |
+
|
| 272 |
+
# ------------------------------ Streamlit UI ------------------------------
|
| 273 |
+
st.set_page_config(page_title="Sundew Diabetes Watch", layout="wide")
|
| 274 |
+
|
| 275 |
+
# Language selector
|
| 276 |
+
lang_name = st.sidebar.selectbox("Language / Lugha / Taal / Harshe", list(LANGS.keys()), index=0)
|
| 277 |
+
LANG = LANGS[lang_name]
|
| 278 |
+
T = lambda s: tr(s, LANG, "en")
|
| 279 |
+
|
| 280 |
+
st.title("🌿 " + T("Sundew Diabetes Watch"))
|
| 281 |
+
st.caption(T("Energy-aware selective activation for diabetes monitoring — research demo (not medical advice)."))
|
| 282 |
+
|
| 283 |
+
# File upload / controls
|
| 284 |
+
left, right = st.columns([2, 1])
|
| 285 |
+
with left:
|
| 286 |
+
uploaded = st.file_uploader(
|
| 287 |
+
T("Upload CGM CSV (timestamp, glucose_mgdl, carbs_g, insulin_units, steps, hr)"),
|
| 288 |
+
type=["csv"],
|
| 289 |
+
)
|
| 290 |
+
use_synth = st.checkbox(T("Use synthetic example if no file uploaded"), value=True)
|
| 291 |
+
with right:
|
| 292 |
+
target_activation = st.slider(T("Target heavy-activation rate"), 0.05, 0.9, 0.25, 0.01)
|
| 293 |
+
temperature = st.slider(T("Gate temperature"), 0.02, 0.5, 0.08, 0.01)
|
| 294 |
+
mode = st.selectbox(T("Sundew mode"), ["tuned_v2", "conservative", "aggressive", "auto_tuned"], index=0)
|
| 295 |
+
|
| 296 |
+
# Backend selector with stable internal keys
|
| 297 |
+
backend_options = [
|
| 298 |
+
("demo", T("Demo (Logistic Regression)")),
|
| 299 |
+
("xgb", "XGBoost"),
|
| 300 |
+
("torch", "PyTorch"),
|
| 301 |
+
("onnx", "ONNX"),
|
| 302 |
+
]
|
| 303 |
+
backend_label = st.sidebar.selectbox(T("Model backend"), [lbl for _, lbl in backend_options], index=0)
|
| 304 |
+
BACKEND_KEY = next(k for k, lbl in backend_options if lbl == backend_label)
|
| 305 |
+
|
| 306 |
+
model_file = None
|
| 307 |
+
if BACKEND_KEY in ("xgb", "torch", "onnx"):
|
| 308 |
+
model_file = st.sidebar.file_uploader(T("Upload trained model file"), type=["json", "bin", "pt", "pth", "onnx"], key="model")
|
| 309 |
+
|
| 310 |
+
# ------------------------------ Load/synthesize data ------------------------------
|
| 311 |
+
if uploaded is not None:
|
| 312 |
+
df = pd.read_csv(uploaded)
|
| 313 |
+
else:
|
| 314 |
+
if not use_synth:
|
| 315 |
+
st.stop()
|
| 316 |
+
rng = np.random.default_rng(7)
|
| 317 |
+
n = 600 # ~50 hours if 5-min cadence
|
| 318 |
+
t0 = pd.Timestamp.utcnow().floor("min")
|
| 319 |
+
times = [t0 + pd.Timedelta(minutes=5 * i) for i in range(n)]
|
| 320 |
+
base = 120 + 25 * np.sin(np.linspace(0, 10 * np.pi, n))
|
| 321 |
+
noise = rng.normal(0, 10, n)
|
| 322 |
+
meals = (rng.random(n) < 0.04).astype(float) * rng.normal(45, 15, n).clip(0, 120)
|
| 323 |
+
insulin = (rng.random(n) < 0.03).astype(float) * rng.normal(4, 1.2, n).clip(0, 8)
|
| 324 |
+
steps = rng.integers(0, 150, size=n)
|
| 325 |
+
hr = 70 + (steps > 80) * rng.integers(30, 60, size=n)
|
| 326 |
+
glucose = base + noise + 0.3 * meals - 0.8 * insulin
|
| 327 |
+
df = pd.DataFrame(
|
| 328 |
+
{
|
| 329 |
+
"timestamp": times,
|
| 330 |
+
"glucose_mgdl": np.round(glucose, 1),
|
| 331 |
+
"carbs_g": np.round(meals, 1),
|
| 332 |
+
"insulin_units": np.round(insulin, 1),
|
| 333 |
+
"steps": steps,
|
| 334 |
+
"hr": hr,
|
| 335 |
+
}
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
# Robust timestamp parsing (handles tz-aware, strings, epoch)
|
| 339 |
+
from pandas.api.types import is_datetime64_any_dtype
|
| 340 |
+
if "timestamp" not in df.columns:
|
| 341 |
+
st.error(T("CSV must include a 'timestamp' column."))
|
| 342 |
+
st.stop()
|
| 343 |
+
|
| 344 |
+
if not is_datetime64_any_dtype(df["timestamp"]):
|
| 345 |
+
df["timestamp"] = pd.to_datetime(df["timestamp"], utc=True, errors="coerce")
|
| 346 |
+
|
| 347 |
+
# Localize if naive
|
| 348 |
+
if getattr(df["timestamp"].dt, "tz", None) is None:
|
| 349 |
+
df["timestamp"] = df["timestamp"].dt.tz_localize("UTC")
|
| 350 |
+
|
| 351 |
+
df = df.sort_values("timestamp").reset_index(drop=True)
|
| 352 |
+
|
| 353 |
+
# Rate-of-change mg/dL per minute
|
| 354 |
+
df["dt_min"] = df["timestamp"].diff().dt.total_seconds() / 60.0
|
| 355 |
+
df["glucose_prev"] = df["glucose_mgdl"].shift(1)
|
| 356 |
+
df["roc_mgdl_min"] = (df["glucose_mgdl"] - df["glucose_prev"]) / df["dt_min"]
|
| 357 |
+
df["roc_mgdl_min"] = df["roc_mgdl_min"].replace([np.inf, -np.inf], 0.0).fillna(0.0)
|
| 358 |
+
|
| 359 |
+
# ------------------------------ Heavy predictor selection ------------------------------
|
| 360 |
+
predict_proba: Optional[Callable[[np.ndarray], float]] = None
|
| 361 |
+
header_note = ""
|
| 362 |
+
|
| 363 |
+
if BACKEND_KEY == "demo":
|
| 364 |
+
predict_proba = build_demo_model(df)
|
| 365 |
+
header_note = T("Demo model trains per session for portability.")
|
| 366 |
+
elif BACKEND_KEY == "xgb" and model_file is not None:
|
| 367 |
+
try:
|
| 368 |
+
predict_proba = load_xgb_predictor(model_file.read())
|
| 369 |
+
header_note = T("XGBoost model loaded from file.")
|
| 370 |
+
except Exception as e:
|
| 371 |
+
st.warning(T("Could not load XGBoost model; falling back to Demo."))
|
| 372 |
+
predict_proba = build_demo_model(df)
|
| 373 |
+
header_note = T("Demo model used (no external file).")
|
| 374 |
+
elif BACKEND_KEY == "torch" and model_file is not None:
|
| 375 |
+
try:
|
| 376 |
+
predict_proba = load_torch_predictor(model_file.read())
|
| 377 |
+
header_note = T("PyTorch TorchScript model loaded.")
|
| 378 |
+
except Exception:
|
| 379 |
+
st.warning(T("Could not load PyTorch model; falling back to Demo."))
|
| 380 |
+
predict_proba = build_demo_model(df)
|
| 381 |
+
header_note = T("Demo model used (no external file).")
|
| 382 |
+
elif BACKEND_KEY == "onnx" and model_file is not None:
|
| 383 |
+
try:
|
| 384 |
+
predict_proba = load_onnx_predictor(model_file.read())
|
| 385 |
+
header_note = T("ONNX model loaded via onnxruntime.")
|
| 386 |
+
except Exception:
|
| 387 |
+
st.warning(T("Could not load ONNX model; falling back to Demo."))
|
| 388 |
+
predict_proba = build_demo_model(df)
|
| 389 |
+
header_note = T("Demo model used (no external file).")
|
| 390 |
+
else:
|
| 391 |
+
st.warning(T("Selected backend requires a model file. Falling back to Demo."))
|
| 392 |
+
predict_proba = build_demo_model(df)
|
| 393 |
+
header_note = T("Demo model used (no external file).")
|
| 394 |
+
|
| 395 |
+
st.info(header_note)
|
| 396 |
+
|
| 397 |
+
# ------------------------------ Gate + streaming loop ------------------------------
|
| 398 |
+
gate = SundewGate(target_activation=target_activation, temperature=temperature, mode=mode)
|
| 399 |
+
|
| 400 |
+
def make_X(row: pd.Series) -> np.ndarray:
|
| 401 |
+
return np.array(
|
| 402 |
+
[
|
| 403 |
+
[
|
| 404 |
+
row.get("glucose_mgdl", 0.0),
|
| 405 |
+
row.get("roc_mgdl_min", 0.0),
|
| 406 |
+
row.get("insulin_units", 0.0),
|
| 407 |
+
row.get("carbs_g", 0.0),
|
| 408 |
+
row.get("hr", 0.0),
|
| 409 |
+
]
|
| 410 |
+
],
|
| 411 |
+
dtype=np.float32,
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
records = []
|
| 415 |
+
alerts = []
|
| 416 |
+
for _, row in df.iterrows():
|
| 417 |
+
score = compute_lightweight_score(row)
|
| 418 |
+
open_gate = gate.decide(score)
|
| 419 |
+
decision = "SKIP"
|
| 420 |
+
proba = None
|
| 421 |
+
if open_gate and predict_proba is not None:
|
| 422 |
+
X = make_X(row)
|
| 423 |
+
try:
|
| 424 |
+
proba = float(predict_proba(X))
|
| 425 |
+
except Exception:
|
| 426 |
+
proba = None
|
| 427 |
+
decision = "RUN"
|
| 428 |
+
if proba is not None and proba >= 0.6:
|
| 429 |
+
alerts.append(
|
| 430 |
+
{
|
| 431 |
+
"timestamp": row["timestamp"],
|
| 432 |
+
"glucose": row["glucose_mgdl"],
|
| 433 |
+
"risk_proba": proba,
|
| 434 |
+
"note": T("⚠ Elevated 30-min risk — please check CGM and plan carbs/insulin."),
|
| 435 |
+
}
|
| 436 |
+
)
|
| 437 |
+
records.append(
|
| 438 |
+
{
|
| 439 |
+
"timestamp": row["timestamp"],
|
| 440 |
+
"glucose": row["glucose_mgdl"],
|
| 441 |
+
"roc": row["roc_mgdl_min"],
|
| 442 |
+
"score": score,
|
| 443 |
+
"gate": decision,
|
| 444 |
+
"risk_proba": proba,
|
| 445 |
+
}
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
out = pd.DataFrame(records)
|
| 449 |
+
events = len(out)
|
| 450 |
+
activations = int((out["gate"] == "RUN").sum())
|
| 451 |
+
rate = activations / max(events, 1)
|
| 452 |
+
|
| 453 |
+
c1, c2, c3 = st.columns(3)
|
| 454 |
+
c1.metric(T("Events"), f"{events}")
|
| 455 |
+
c2.metric(T("Heavy activations"), f"{activations}")
|
| 456 |
+
c3.metric(T("Activation rate"), f"{rate:.2%}")
|
| 457 |
+
|
| 458 |
+
st.line_chart(out.set_index("timestamp")["glucose"], height=220)
|
| 459 |
+
st.line_chart(out.set_index("timestamp")["score"], height=220)
|
| 460 |
+
|
| 461 |
+
st.subheader(T("Decisions (tail)"))
|
| 462 |
+
st.dataframe(out.tail(50))
|
| 463 |
+
|
| 464 |
+
st.subheader(T("Alerts"))
|
| 465 |
+
if alerts:
|
| 466 |
+
st.dataframe(pd.DataFrame(alerts))
|
| 467 |
+
else:
|
| 468 |
+
st.info(T("No high-risk alerts triggered in this window."))
|
| 469 |
+
|
| 470 |
+
# Footer: show Sundew version & engine status
|
| 471 |
+
try:
|
| 472 |
+
from importlib.metadata import version as _ver
|
| 473 |
+
_sundew_ver = _ver("sundew-algorithms")
|
| 474 |
+
except Exception:
|
| 475 |
+
_sundew_ver = "unknown"
|
| 476 |
+
|
| 477 |
+
engine_txt = f"sundew-algorithms {_sundew_ver}" if _HAS_SUNDEW else T("fallback gate (install sundew-algorithms)")
|
| 478 |
+
st.caption(T("Engine: ") + engine_txt)
|