mgbam's picture
Upload app.py
76d896f verified
from __future__ import annotations
from datetime import datetime, timedelta
"""Sundew Diabetes Commons – holistic, open Streamlit experience."""
import json
import logging
import math
import time
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple
import numpy as np
import pandas as pd
import streamlit as st
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
try:
from sundew import SundewAlgorithm # type: ignore[attr-defined]
from sundew.config import SundewConfig
from sundew.config_presets import get_preset
_HAS_SUNDEW = True
except Exception: # fallback when package is unavailable
SundewAlgorithm = None # type: ignore
SundewConfig = object # type: ignore
def get_preset(_: str) -> Any: # type: ignore
return None
_HAS_SUNDEW = False
LOGGER = logging.getLogger("sundew.diabetes.commons")
@dataclass
class SundewGateConfig:
target_activation: float = 0.22
temperature: float = 0.08
mode: str = "tuned_v2"
use_native: bool = True
def _build_sundew_runtime(config: SundewGateConfig) -> Optional[SundewAlgorithm]:
if not (config.use_native and _HAS_SUNDEW and SundewAlgorithm is not None):
return None
try:
preset = get_preset(config.mode)
except Exception:
preset = SundewConfig() # type: ignore
for attr, value in (
("target_activation_rate", config.target_activation),
("gate_temperature", config.temperature),
):
try:
setattr(preset, attr, value)
except Exception:
pass
for constructor in (
lambda: SundewAlgorithm(preset), # type: ignore[arg-type]
lambda: SundewAlgorithm(config=preset), # type: ignore[arg-type]
lambda: SundewAlgorithm(),
):
try:
return constructor()
except Exception:
continue
return None
class AdaptiveGate:
"""Adapter that hides Sundew/Fallback branching."""
def __init__(self, config: SundewGateConfig) -> None:
self.config = config
self._ema = 0.0
self._tau = float(np.clip(config.target_activation, 0.05, 0.95))
self._alpha = 0.05
self.sundew: Optional[SundewAlgorithm] = _build_sundew_runtime(config)
def decide(self, score: float) -> bool:
if self.sundew is not None:
for attr in ("decide", "step", "open"):
fn = getattr(self.sundew, attr, None)
if callable(fn):
try:
return bool(fn(score))
except Exception:
continue
normalized = float(np.clip(score / 1.4, 0.0, 1.0))
temperature = max(self.config.temperature, 0.02)
probability = 1.0 / (1.0 + math.exp(-(normalized - self._tau) / temperature))
fired = bool(np.random.rand() < probability)
self._ema = (1 - self._alpha) * self._ema + self._alpha * (
1.0 if fired else 0.0
)
self._tau += 0.05 * (self.config.target_activation - self._ema)
self._tau = float(np.clip(self._tau, 0.05, 0.95))
return fired
def load_example_dataset(n_rows: int = 720) -> pd.DataFrame:
rng = np.random.default_rng(17)
t0 = pd.Timestamp.utcnow().floor("5min") - pd.Timedelta(minutes=5 * n_rows)
timestamps = [t0 + pd.Timedelta(minutes=5 * i) for i in range(n_rows)]
base = 118 + 28 * np.sin(np.linspace(0, 7 * math.pi, n_rows))
noise = rng.normal(0, 12, n_rows)
meals = (rng.random(n_rows) < 0.05).astype(float) * rng.normal(50, 18, n_rows).clip(
0, 150
)
insulin = (rng.random(n_rows) < 0.03).astype(float) * rng.normal(
4.2, 1.5, n_rows
).clip(0, 10)
steps = rng.integers(0, 200, size=n_rows)
heart_rate = 68 + (steps > 90) * rng.integers(20, 45, size=n_rows)
sleep_flag = (rng.random(n_rows) < 0.12).astype(float)
stress_index = rng.uniform(0, 1, n_rows)
glucose = base + noise
for i in range(n_rows):
if i >= 6:
glucose[i] += 0.4 * meals[i - 6 : i].sum() / 6
if i >= 4:
glucose[i] -= 1.2 * insulin[i - 4 : i].sum() / 4
if steps[i] > 100:
glucose[i] -= 15
glucose[180:200] = rng.normal(62, 5, 20)
glucose[350:365] = rng.normal(210, 10, 15)
return pd.DataFrame(
{
"timestamp": timestamps,
"glucose_mgdl": np.round(np.clip(glucose, 40, 350), 1),
"carbs_g": np.round(meals, 1),
"insulin_units": np.round(insulin, 1),
"steps": steps.astype(int),
"hr": (heart_rate + rng.normal(0, 5, n_rows)).round().astype(int),
"sleep_flag": sleep_flag,
"stress_index": stress_index,
}
)
def compute_features(df: pd.DataFrame) -> pd.DataFrame:
df = df.copy().sort_values("timestamp").reset_index(drop=True)
df["timestamp"] = pd.to_datetime(df["timestamp"], utc=True)
df["glucose_prev"] = df["glucose_mgdl"].shift(1)
dt = (
df["timestamp"].astype("int64") - df["timestamp"].shift(1).astype("int64")
) / 60e9
df["roc_mgdl_min"] = (df["glucose_mgdl"] - df["glucose_prev"]) / dt
df["roc_mgdl_min"] = df["roc_mgdl_min"].replace([np.inf, -np.inf], 0.0).fillna(0.0)
ema = df["glucose_mgdl"].ewm(span=48, adjust=False).mean()
df["deviation"] = (df["glucose_mgdl"] - ema).fillna(0.0)
df["iob_proxy"] = df["insulin_units"].rolling(12, min_periods=1).sum() / 12.0
df["cob_proxy"] = df["carbs_g"].rolling(12, min_periods=1).sum() / 12.0
df["variability"] = df["glucose_mgdl"].rolling(24, min_periods=2).std().fillna(0.0)
df["activity_factor"] = (df["steps"] / 200.0 + df["hr"] / 160.0).clip(0, 1)
df["sleep_flag"] = df["sleep_flag"].fillna(0.0) if "sleep_flag" in df else 0.0
df["stress_index"] = df["stress_index"].fillna(0.5) if "stress_index" in df else 0.5
return df[
[
"timestamp",
"glucose_mgdl",
"roc_mgdl_min",
"deviation",
"iob_proxy",
"cob_proxy",
"variability",
"activity_factor",
"sleep_flag",
"stress_index",
]
].copy()
def lightweight_score(row: pd.Series) -> float:
glucose = row["glucose_mgdl"]
roc = row["roc_mgdl_min"]
deviation = row["deviation"]
iob = row["iob_proxy"]
cob = row["cob_proxy"]
stress = row["stress_index"]
score = 0.0
score += max(0.0, (glucose - 180) / 80)
score += max(0.0, (70 - glucose) / 30)
score += abs(roc) / 6.0
score += abs(deviation) / 100.0
score += stress * 0.4
score += max(0.0, (cob - iob) * 0.04)
return float(np.clip(score, 0.0, 1.4))
def train_simple_model(df: pd.DataFrame):
features = df[
[
"glucose_mgdl",
"roc_mgdl_min",
"iob_proxy",
"cob_proxy",
"activity_factor",
"variability",
]
]
labels = (df["glucose_mgdl"] > 180).astype(int)
model = Pipeline(
[
("scaler", StandardScaler()),
("clf", LogisticRegression(max_iter=400, class_weight="balanced")),
]
)
try:
model.fit(features, labels)
return model
except Exception:
return None
def render_overview(
results: pd.DataFrame,
alerts: List[Dict[str, Any]],
gate_config: SundewGateConfig,
) -> None:
total = len(results)
activations = int(results["activated"].sum())
activation_rate = activations / max(total, 1)
energy_savings = max(0.0, 1.0 - activation_rate)
col_a, col_b, col_c, col_d = st.columns(4)
col_a.metric("Events", f"{total}")
col_b.metric("Heavy activations", f"{activations} ({activation_rate:.1%})")
col_c.metric("Estimated energy saved", f"{energy_savings:.1%}")
col_d.metric("Alerts", f"{len(alerts)}")
if gate_config.use_native and _HAS_SUNDEW:
st.caption(
"Energy savings follow 1 − activation rate. With native Sundew gating we target "
f"≈{gate_config.target_activation:.0%} activations, so savings approach "
f"{1 - gate_config.target_activation:.0%}."
)
else:
st.warning(
"Fallback gate active – heavy inference runs frequently, so savings mirror the observed activation rate."
)
with st.expander("Recent alerts", expanded=False):
if alerts:
st.table(pd.DataFrame(alerts).tail(10))
else:
st.info("No high-risk alerts in this window.")
st.area_chart(results.set_index("timestamp")["glucose_mgdl"], height=220)
def render_treatment_plan(medications: Dict[str, Any], next_visit: str) -> None:
"""Display medication plan guidance within the treatment tab."""
st.subheader("Full-cycle treatment support")
st.write(
"Upload or edit medication schedules, insulin titration guidance, and clinician notes."
)
st.json(medications, expanded=False)
st.caption(f"Next scheduled review: {next_visit}")
def render_lifestyle_support(results: pd.DataFrame) -> None:
st.subheader("Lifestyle & wellbeing")
recent = results.tail(96).copy()
avg_glucose = recent["glucose_mgdl"].mean()
active_minutes = int((recent["activity_factor"] > 0.4).sum() * 5)
col1, col2 = st.columns(2)
col1.metric("Average glucose (8h)", f"{avg_glucose:.1f} mg/dL")
col2.metric("Active minutes", f"{active_minutes} min")
st.markdown(
"""
- Aim for gentle movement every hour you are awake.
- Pair carbohydrates with protein/fiber to smooth spikes.
- Sleep flagged recently? Try 10-minute breathing before bed.
- Journal one gratitude moment—stress strongly shapes risk.
"""
)
def render_community_actions() -> Dict[str, List[str]]:
st.subheader("Community impact")
st.write(
"Invite families, caregivers, and clinics to the commons. Set up alerts, shared logs, and outreach."
)
contact_list = [
"SMS: +233-200-000-111",
"WhatsApp: Care Circle Group",
"Clinic portal: sundew.health/community",
]
st.table(pd.DataFrame({"Support channel": contact_list}))
return {
"Desired partners": ["Rural clinics", "Youth ambassadors", "Nutrition co-ops"],
"Needs": ["Smartphone grants", "Solar charging kits", "Translation volunteers"],
}
def render_telemetry(results: pd.DataFrame, telemetry: List[Dict[str, Any]]) -> None:
"""Allow operators to export telemetry and inspect recent events."""
st.subheader("Telemetry & export")
st.write(
"Download event-level telemetry for validation, research, or regulatory reporting."
)
st.caption(
"Energy savings are computed as 1 minus the observed activation rate. When the gate stays mostly open, savings naturally trend toward zero."
)
json_payload = json.dumps(telemetry, default=str, indent=2)
st.download_button(
label="Download telemetry (JSON)",
data=json_payload,
file_name="sundew_diabetes_telemetry.json",
mime="application/json",
)
st.dataframe(results.tail(100), use_container_width=True)
def main() -> None:
"""Streamlit entry point for the Sundew diabetes commons demo."""
st.set_page_config(
page_title="Sundew Diabetes Commons",
layout="wide",
page_icon="🕊",
)
st.title("Sundew Diabetes Commons")
st.caption(
"Open, compassionate diabetes care—monitoring, treatment, lifestyle, community."
)
st.sidebar.header("Load data")
uploaded = st.sidebar.file_uploader("CGM / diary CSV", type=["csv"])
use_example = st.sidebar.checkbox("Use synthetic example", value=True)
st.sidebar.header("Sundew configuration")
use_native = st.sidebar.checkbox(
"Use native Sundew gating",
value=_HAS_SUNDEW,
help="Disable to demo the lightweight fallback gate only.",
)
target_activation = st.sidebar.slider("Target activation", 0.05, 0.90, 0.22, 0.01)
temperature = st.sidebar.slider("Gate temperature", 0.02, 0.50, 0.08, 0.01)
mode = st.sidebar.selectbox(
"Preset", ["tuned_v2", "conservative", "aggressive", "auto_tuned"], index=0
)
if uploaded is not None:
df = pd.read_csv(uploaded)
elif use_example:
df = load_example_dataset()
else:
st.info("Upload a CSV file or enable the synthetic example to continue.")
st.stop()
features = compute_features(df)
model = train_simple_model(features)
gate_config = SundewGateConfig(
target_activation=target_activation,
temperature=temperature,
mode=mode,
use_native=use_native,
)
gate = AdaptiveGate(gate_config)
telemetry: List[Dict[str, Any]] = []
records: List[Dict[str, Any]] = []
alerts: List[Dict[str, Any]] = []
total_events = len(features)
progress = st.progress(0.0)
status = st.empty()
for idx, row in enumerate(features.itertuples(index=False), start=1):
event = row._asdict()
score = lightweight_score(pd.Series(event))
should_run = gate.decide(score)
risk_proba: Optional[float] = None
if should_run and model is not None:
sample_df = pd.DataFrame(
[
[
event["glucose_mgdl"],
event["roc_mgdl_min"],
event["iob_proxy"],
event["cob_proxy"],
event["activity_factor"],
event["variability"],
]
],
columns=[
"glucose_mgdl",
"roc_mgdl_min",
"iob_proxy",
"cob_proxy",
"activity_factor",
"variability",
],
)
try:
risk_proba = float(model.predict_proba(sample_df)[0, 1]) # type: ignore[index]
except Exception as exc:
LOGGER.debug("Risk model inference failed: %s", exc)
risk_proba = None
if risk_proba is not None and risk_proba >= 0.6:
alerts.append(
{
"timestamp": event["timestamp"],
"glucose": event["glucose_mgdl"],
"risk": risk_proba,
"message": "Check CGM, hydrate, plan balanced snack/insulin",
}
)
records.append(
{
"timestamp": event["timestamp"],
"glucose_mgdl": event["glucose_mgdl"],
"roc_mgdl_min": event["roc_mgdl_min"],
"deviation": event["deviation"],
"iob_proxy": event["iob_proxy"],
"cob_proxy": event["cob_proxy"],
"variability": event["variability"],
"activity_factor": event["activity_factor"],
"score": score,
"activated": should_run,
"risk_proba": risk_proba,
}
)
telemetry.append(
{
"timestamp": str(event["timestamp"]),
"score": score,
"activated": should_run,
"risk_proba": risk_proba,
}
)
progress.progress(idx / max(total_events, 1))
status.text(f"Processing event {idx}/{total_events}")
progress.empty()
status.empty()
results = pd.DataFrame(records)
tabs = st.tabs(["Overview", "Treatment", "Lifestyle", "Community", "Telemetry"])
with tabs[0]:
render_overview(results, alerts, gate_config)
with tabs[1]:
default_plan = {
"Insulin": {
"Basal": "14u glargine at 21:00",
"Bolus": "1u per 10g carbs + correction 1u per 40 mg/dL over 140",
},
"Oral medications": {
"Metformin": "500mg breakfast + 500mg dinner",
"Empagliflozin": "10mg once daily (if eGFR > 45)",
},
"Monitoring": [
"CGM sensor change every 10 days",
"Morning fasted CGM calibration",
"Weekly telehealth coaching",
"Quarterly in-person clinician review",
],
"Safety plan": [
"Carry glucose tabs + glucagon kit",
"Emergency contact: +233-200-000-888",
],
"Lifestyle": [
"30 min brisk walk 5x/week",
"Bedtime snack if glucose < 110 mg/dL",
"Hydrate 2L water daily unless contraindicated",
],
}
st.caption(
"Upload or edit schedules, medication titration guidance, and clinician notes."
)
uploaded_plan = st.file_uploader(
"Optional plan JSON", type=["json"], key="plan_uploader"
)
plan_text = st.text_area(
"Edit plan JSON",
json.dumps(default_plan, indent=2),
height=240,
key="plan_editor",
)
plan_data = default_plan
if uploaded_plan is not None:
try:
plan_data = json.load(uploaded_plan)
except Exception as exc:
st.error(f"Could not parse uploaded plan JSON: {exc}")
plan_data = default_plan
else:
try:
plan_data = json.loads(plan_text)
except Exception as exc:
st.warning(
f"Using default plan because text could not be parsed: {exc}"
)
plan_data = default_plan
next_visit = (datetime.utcnow() + timedelta(days=30)).strftime(
"%Y-%m-%d (telehealth)"
)
render_treatment_plan(plan_data, next_visit=next_visit)
with tabs[2]:
render_lifestyle_support(results)
with tabs[3]:
community_items = render_community_actions()
st.json(community_items, expanded=False)
with tabs[4]:
render_telemetry(results, telemetry)
st.sidebar.markdown("---")
status_text = (
"native gating"
if gate_config.use_native and gate.sundew is not None
else "fallback gate"
)
st.sidebar.caption(f"Sundew status: {status_text}")
if __name__ == "__main__":
main()