Spaces:
Running
Running
| import streamlit as st | |
| from streamlit_extras.switch_page_button import switch_page | |
| st.title("RT-DETR") | |
| st.success("""[Original tweet](https://twitter.com/mervenoyann/status/1807790959884665029) (July 1, 2024)""", icon="βΉοΈ") | |
| st.markdown(""" """) | |
| st.markdown("""Real-time DEtection Transformer (RT-DETR) landed in π€ Transformers with Apache 2.0 license π | |
| Do DETRs Beat YOLOs on Real-time Object Detection? Keep reading π | |
| """) | |
| st.markdown(""" """) | |
| st.video("pages/RT-DETR/video_1.mp4", format="video/mp4") | |
| st.markdown(""" """) | |
| st.markdown(""" | |
| Short answer, it does! π [notebook](https://t.co/NNRpG9cAEa), π [models](https://t.co/ctwWQqNcEt), π [demo](https://t.co/VrmDDDjoNw) | |
| YOLO models are known to be super fast for real-time computer vision, but they have a downside with being volatile to NMS π₯² | |
| Transformer-based models on the other hand are computationally not as efficient π₯² | |
| Isn't there something in between? Enter RT-DETR! | |
| The authors combined CNN backbone, multi-stage hybrid decoder (combining convs and attn) with a transformer decoder β | |
| """) | |
| st.markdown(""" """) | |
| st.image("pages/RT-DETR/image_1.jpg", use_column_width=True) | |
| st.markdown(""" """) | |
| st.markdown(""" | |
| In the paper, authors also claim one can adjust speed by changing decoder layers without retraining altogether. | |
| They also conduct many ablation studies and try different decoders. | |
| """) | |
| st.markdown(""" """) | |
| st.image("pages/RT-DETR/image_2.jpg", use_column_width=True) | |
| st.markdown(""" """) | |
| st.markdown(""" | |
| The authors find out that the model performs better in terms of speed and accuracy compared to the previous state-of-the-art π€© | |
| """) | |
| st.markdown(""" """) | |
| st.image("pages/RT-DETR/image_3.jpg", use_column_width=True) | |
| st.markdown(""" """) | |
| st.info(""" | |
| Ressources: | |
| [DETRs Beat YOLOs on Real-time Object Detection](https://arxiv.org/abs/2304.08069) | |
| by Yian Zhao, Wenyu Lv, Shangliang Xu, Jinman Wei, Guanzhong Wang, Qingqing Dang, Yi Liu, Jie Chen (2023) | |
| [GitHub](https://github.com/lyuwenyu/RT-DETR/) | |
| [Hugging Face documentation](https://huggingface.co/docs/transformers/main/en/model_doc/rt_detr)""", icon="π") | |
| st.markdown(""" """) | |
| st.markdown(""" """) | |
| st.markdown(""" """) | |
| col1, col2, col3 = st.columns(3) | |
| with col1: | |
| if st.button('Previous paper', use_container_width=True): | |
| switch_page("4M-21") | |
| with col2: | |
| if st.button('Home', use_container_width=True): | |
| switch_page("Home") | |
| with col3: | |
| if st.button('Next paper', use_container_width=True): | |
| switch_page("Llava-NeXT-Interleave") |