File size: 16,006 Bytes
234a585
 
 
 
 
 
 
 
 
 
 
 
 
0074832
234a585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0074832
234a585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0074832
234a585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cbe609
234a585
2cbe609
234a585
 
2cbe609
234a585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db4e94e
234a585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0074832
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import json
import time
import cv2
import tempfile
import os

import gradio as gr
import numpy as np
from gradio.themes.ocean import Ocean
from PIL import Image
import torch
from transformers import AutoModelForCausalLM
import supervision as sv
import spaces

model_id = "moondream/moondream3-preview"

model = AutoModelForCausalLM.from_pretrained(
    model_id,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16,
    device_map={"": "cuda"},
)
model.compile()

def create_annotated_image(image, detection_result, object_name="Object"):
    if not isinstance(detection_result, dict) or "objects" not in detection_result:
        return image
    
    original_width, original_height = image.size
    annotated_image = np.array(image.convert("RGB"))
  
    bboxes = []
    labels = []
    
    for i, obj in enumerate(detection_result["objects"]):
        x_min = int(obj["x_min"] * original_width)
        y_min = int(obj["y_min"] * original_height)
        x_max = int(obj["x_max"] * original_width)
        y_max = int(obj["y_max"] * original_height)
        
        x_min = max(0, min(x_min, original_width))
        y_min = max(0, min(y_min, original_height))
        x_max = max(0, min(x_max, original_width))
        y_max = max(0, min(y_max, original_height))
        
        if x_max > x_min and y_max > y_min:
            bboxes.append([x_min, y_min, x_max, y_max])
            labels.append(f"{object_name} {i+1}")
            print(f"Box {i+1}: ({x_min}, {y_min}, {x_max}, {y_max})")
    
    
    detections = sv.Detections(
        xyxy=np.array(bboxes, dtype=np.float32),
        class_id=np.arange(len(bboxes))
    )
    
    bounding_box_annotator = sv.BoxAnnotator(
        thickness=3,
        color_lookup=sv.ColorLookup.INDEX
    )
    label_annotator = sv.LabelAnnotator(
        text_thickness=2,
        text_scale=0.6,
        color_lookup=sv.ColorLookup.INDEX
    )
    
    annotated_image = bounding_box_annotator.annotate(
        scene=annotated_image, detections=detections
    )
    annotated_image = label_annotator.annotate(
        scene=annotated_image, detections=detections, labels=labels
    )
        
        
    
    return Image.fromarray(annotated_image)


@spaces.GPU()
def process_video_with_tracking(video_path, prompt, detection_interval=3):
    cap = cv2.VideoCapture(video_path)
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    
    byte_tracker = sv.ByteTrack()
    
    temp_dir = tempfile.mkdtemp()
    output_path = os.path.join(temp_dir, "tracked_video.mp4")
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
    
    frame_count = 0
    detection_count = 0
    last_detections = None
    
    try:
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            
            run_detection = (frame_count % detection_interval == 0)
            
            if run_detection:
                frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                pil_image = Image.fromarray(frame_rgb)
                
                result = model.detect(pil_image, prompt)
                detection_count += 1
                
                if "objects" in result and result["objects"]:
                    bboxes = []
                    confidences = []
                    
                    for obj in result["objects"]:
                        x_min = max(0.0, min(1.0, obj["x_min"])) * width
                        y_min = max(0.0, min(1.0, obj["y_min"])) * height
                        x_max = max(0.0, min(1.0, obj["x_max"])) * width
                        y_max = max(0.0, min(1.0, obj["y_max"])) * height
                        
                        if x_max > x_min and y_max > y_min:
                            bboxes.append([x_min, y_min, x_max, y_max])
                            confidences.append(0.8)
                    
                    if bboxes:  
                        detections = sv.Detections(
                            xyxy=np.array(bboxes, dtype=np.float32),
                            confidence=np.array(confidences, dtype=np.float32),
                            class_id=np.zeros(len(bboxes), dtype=int)
                        )
                        
                        detections = byte_tracker.update_with_detections(detections)
                        last_detections = detections
                    else:
                        empty_detections = sv.Detections.empty()
                        detections = byte_tracker.update_with_detections(empty_detections)
                        last_detections = detections
                else:
                    empty_detections = sv.Detections.empty()
                    detections = byte_tracker.update_with_detections(empty_detections)
                    last_detections = detections
                        

            else:
                empty_detections = sv.Detections.empty()
                detections = byte_tracker.update_with_detections(empty_detections)
            if detections is not None and len(detections) > 0:
                box_annotator = sv.BoxAnnotator(
                    thickness=3,
                    color_lookup=sv.ColorLookup.TRACK
                )
                label_annotator = sv.LabelAnnotator(
                    text_scale=0.6,
                    text_thickness=2,
                    color_lookup=sv.ColorLookup.TRACK
                )
                
                labels = []
                for tracker_id in detections.tracker_id:
                    if tracker_id is not None:
                        labels.append(f"{prompt} ID: {tracker_id}")
                    else:
                        labels.append(f"{prompt} Unknown")
                
                frame = box_annotator.annotate(scene=frame, detections=detections)
                frame = label_annotator.annotate(scene=frame, detections=detections, labels=labels)
            
            out.write(frame)
            frame_count += 1
            
            if frame_count % 30 == 0:
                progress = (frame_count / total_frames) * 100
                print(f"Processing: {progress:.1f}% ({frame_count}/{total_frames}) - Detections: {detection_count}")
    
    finally:
        cap.release()
        out.release()
    
    summary = f"""Video processing complete:
- Total frames processed: {frame_count}
- Detection runs: {detection_count} (every {detection_interval} frames)
- Objects tracked: {prompt}
- Processing speed: ~{detection_count/frame_count*100:.1f}% detection rate for optimization"""
    
    return output_path, summary

def create_point_annotated_image(image, point_result):
    """Create annotated image with points for detected objects."""
    if not isinstance(point_result, dict) or "points" not in point_result:
        return image
    
    original_width, original_height = image.size
    annotated_image = np.array(image.convert("RGB"))
    
    points = []
    for point in point_result["points"]:
        x = int(point["x"] * original_width)
        y = int(point["y"] * original_height)
        points.append([x, y])
    
    if points:
        points_array = np.array(points).reshape(1, -1, 2)
        key_points = sv.KeyPoints(xy=points_array)
        vertex_annotator = sv.VertexAnnotator(radius=8, color=sv.Color.RED)
        annotated_image = vertex_annotator.annotate(
            scene=annotated_image, key_points=key_points
        )
    
    return Image.fromarray(annotated_image)

@spaces.GPU()
def detect_objects(image, prompt, task_type, max_objects):
    STANDARD_SIZE = (1024, 1024)
    image.thumbnail(STANDARD_SIZE)
    
    t0 = time.perf_counter()
    
    if task_type == "Object Detection":
        settings = {"max_objects": max_objects} if max_objects > 0 else {}
        result = model.detect(image, prompt, settings=settings)
        annotated_image = create_annotated_image(image, result, prompt)
        
    elif task_type == "Point Detection":
        result = model.point(image, prompt)
        annotated_image = create_point_annotated_image(image, result)
        
    elif task_type == "Caption":
        result = model.caption(image, length="normal")
        annotated_image = image  
        
    else:  
        result = model.query(image=image, question=prompt, reasoning=True)
        annotated_image = image  
          
    
    elapsed_ms = (time.perf_counter() - t0) * 1_000
    
    if isinstance(result, dict):
        if "objects" in result:
          output_text = f"Found {len(result['objects'])} objects:\n"
          for i, obj in enumerate(result['objects'], 1):
              output_text += f"\n{i}. Bounding box: "
              output_text += f"({obj['x_min']:.3f}, {obj['y_min']:.3f}, {obj['x_max']:.3f}, {obj['y_max']:.3f})"
        elif "points" in result:
            output_text = f"Found {len(result['points'])} points:\n"
            for i, point in enumerate(result['points'], 1):
                output_text += f"\n{i}. Point: ({point['x']:.3f}, {point['y']:.3f})"
        elif "caption" in result:
            output_text = result['caption']
        elif "answer" in result:
            if "reasoning" in result:
                output_text = f"Reasoning: {result['reasoning']}\n\nAnswer: {result['answer']}"
            else:
                output_text = result['answer']
        else:
            output_text = json.dumps(result, indent=2)
    else:
        output_text = str(result)
    
    timing_text = f"Inference time: {elapsed_ms:.0f} ms"
    
    return annotated_image, output_text, timing_text

def process_video(video_file, prompt, detection_interval):
    if video_file is None:
        return None, "Please upload a video file"
    
    output_path, summary = process_video_with_tracking(
        video_file, prompt, detection_interval
    )
    return output_path, summary


with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# Moondream3 🌝")
    gr.Markdown("""
    *Try [Moondream3 Preview](https://huggingface.co/moondream/moondream3-preview) for following tasks:*
    
    - **Object Detection**
    - **Point Detection**
    - **Captioning**
    - **Visual Question Answering**
    - **Video Object Tracking**
    """)

    with gr.Tabs() as tabs:
        with gr.Tab("Image Processing"):
            with gr.Row():
                with gr.Column(scale=2):
                    image_input = gr.Image(label="Upload an image", type="pil", height=400)
                    
                    task_type = gr.Radio(
                        choices=["Object Detection", "Point Detection", "Caption", "Visual Question Answering"],
                        label="Task Type",
                        value="Object Detection"
                    )
                    
                    prompt_input = gr.Textbox(
                        label="Prompt (object to detect/question to ask)",
                        placeholder="e.g., 'car', 'person', 'What's in this image?'",
                        value="objects"
                    )
                    
                    max_objects = gr.Number(
                        label="Max Objects (for Object Detection only)",
                        value=10,
                        minimum=1,
                        maximum=50,
                        step=1,
                        visible=True
                    )
                    
                    generate_btn = gr.Button(value="Generate", variant="primary")

                with gr.Column(scale=2):
                    output_image = gr.Image(
                        type="pil", 
                        label="Result", 
                        height=400
                    )
                    output_textbox = gr.Textbox(
                        label="Model Response", 
                        lines=10,
                        show_copy_button=True
                    )
                    output_time = gr.Markdown()

            gr.Markdown("### Examples")
  
            example_prompts = [
                [
                    "https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/candy.JPG",
                    "Object Detection",
                    "candy",
                    5
                ],
                [
                    "https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/candy.JPG", 
                    "Point Detection",
                    "candy",
                    5
                ],
                [
                    "https://moondream.ai/images/blog/moondream-3-preview/benchmarks.jpg",
                    "Caption", 
                    "",
                    5
                ],
                [
                    "https://moondream.ai/images/blog/moondream-3-preview/benchmarks.jpg",
                    "Visual Question Answering", 
                    "how well does moondream 3 perform in chartvqa?",
                    5
                ],
            ]

            gr.Examples(
                examples=example_prompts,
                inputs=[image_input, task_type, prompt_input, max_objects],
                label="Click an example to populate inputs"
            )
        
        with gr.Tab("Video Object Tracking"):
            with gr.Row():
                with gr.Column(scale=2):
                    video_input = gr.Video(
                        label="Upload a video file",
                        height=400
                    )
                    
                    video_prompt = gr.Textbox(
                        label="Object to track",
                        placeholder="e.g., 'person', 'car', 'ball'",
                        value="person"
                    )
                    
                    detection_interval = gr.Slider(
                        minimum=10,
                        maximum=30,
                        value=15,
                        step=5,
                        label="Detection Interval (frames)",
                        info="Run detection every N frames (less is slower but more accurate, ZeroGPU might time out with long videos)"
                    )
                    
                    process_video_btn = gr.Button(value="Process Video", variant="primary")

                with gr.Column(scale=2):
                    output_video = gr.Video(
                        label="Tracked Video Result",
                        height=400
                    )
                    video_summary = gr.Textbox(
                        label="Processing Summary",
                        lines=8,
                        show_copy_button=True
                    )
            gr.Markdown("### Examples")
  
            example_prompts = [
                [
                    "https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/IMG_8137.mp4",
                    "snowboarder",
                    15
                ],
            ]

            gr.Examples(
                examples=example_prompts,
                inputs=[video_input, video_prompt, detection_interval],
                label="Click an example to populate inputs"
            )
    def update_max_objects_visibility(task):
        return gr.Number(visible=(task == "Object Detection"))
    
    task_type.change(
        fn=update_max_objects_visibility,
        inputs=[task_type],
        outputs=[max_objects]
    )


    generate_btn.click(
        fn=detect_objects,
        inputs=[image_input, prompt_input, task_type, max_objects],
        outputs=[output_image, output_textbox, output_time]
    )

    process_video_btn.click(
        fn=process_video,
        inputs=[video_input, video_prompt, detection_interval],
        outputs=[output_video, video_summary]
    )

if __name__ == "__main__":
    demo.launch()