Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
siglip_checkpoint = "nielsr/siglip-base-patch16-224"
|
| 7 |
+
clip_checkpoint = "openai/clip-vit-base-patch16"
|
| 8 |
+
siglip_detector = pipeline(model=siglip_checkpoint, task="zero-shot-image-classification")
|
| 9 |
+
clip_detector = pipeline(model=clip_checkpoint, task="zero-shot-image-classification")
|
| 10 |
+
|
| 11 |
+
def postprocess(output):
|
| 12 |
+
return {out["label"]: float(out["score"]) for out in output}
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def infer(image, candidate_labels):
|
| 16 |
+
candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")]
|
| 17 |
+
siglip_out = siglip_detector(image, candidate_labels=candidate_labels)
|
| 18 |
+
clip_out = clip_detector(image, candidate_labels=candidate_labels)
|
| 19 |
+
return postprocess(clip_out), postprocess(siglip_out)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
with gr.Blocks() as demo:
|
| 23 |
+
gr.Markdown("# Compare CLIP and SigLIP")
|
| 24 |
+
gr.Markdown("Compare the performance of CLIP and SigLIP on zero-shot classification in this Space 👇")
|
| 25 |
+
with gr.Row():
|
| 26 |
+
with gr.Column():
|
| 27 |
+
image_input = gr.Image(type="pil")
|
| 28 |
+
text_input = gr.Textbox(label="Input a list of labels")
|
| 29 |
+
run_button = gr.Button("Run", visible=True)
|
| 30 |
+
|
| 31 |
+
with gr.Column():
|
| 32 |
+
clip_output = gr.Label(label = "CLIP Output", num_top_classes=3)
|
| 33 |
+
siglip_output = gr.Label(label = "SigLIP Output", num_top_classes=3)
|
| 34 |
+
|
| 35 |
+
examples = [["./baklava.jpg", "baklava, souffle, tiramisu"]]
|
| 36 |
+
gr.Examples(
|
| 37 |
+
examples = examples,
|
| 38 |
+
inputs=[image_input, text_input],
|
| 39 |
+
outputs=[clip_output,
|
| 40 |
+
siglip_output
|
| 41 |
+
],
|
| 42 |
+
fn=infer,
|
| 43 |
+
cache_examples=True
|
| 44 |
+
)
|
| 45 |
+
run_button.click(fn=infer,
|
| 46 |
+
inputs=[image_input, text_input],
|
| 47 |
+
outputs=[clip_output,
|
| 48 |
+
siglip_output
|
| 49 |
+
])
|