Spaces:
Sleeping
Sleeping
| import chromadb | |
| import pandas as pd | |
| from sentence_transformers import SentenceTransformer | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| import json | |
| import openai | |
| from openai import OpenAI | |
| import numpy as np | |
| import requests | |
| import chromadb | |
| from chromadb import Client | |
| from sentence_transformers import SentenceTransformer, util | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from chromadb import Client | |
| from chromadb import PersistentClient | |
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| import os | |
| import requests | |
| import time | |
| import tempfile | |
| from langdetect import detect | |
| import nltk | |
| nltk.download('punkt') | |
| from nltk.tokenize import word_tokenize | |
| from rank_bm25 import BM25Okapi | |
| API_KEY = os.environ.get("OPENROUTER_API_KEY") | |
| # Load the Excel file | |
| df = pd.read_excel("web_documents.xlsx", engine='openpyxl') | |
| # Initialize Chroma Persistent Client | |
| client = chromadb.PersistentClient(path="./db") | |
| # Create (or get) the Chroma collection | |
| collection = client.get_or_create_collection( | |
| name="rag_web_db_cosine_full_documents", | |
| metadata={"hnsw:space": "cosine"} | |
| ) | |
| # Load the embedding model | |
| #embedding_model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2') | |
| #embedding_model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') | |
| #embedding_model= SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True) | |
| #embedding_model= SentenceTransformer("nomic-ai/nomic-embed-text-v2-moe", trust_remote_code=True) | |
| embedding_model = SentenceTransformer("intfloat/multilingual-e5-base") | |
| # Initialize the text splitter | |
| #text_splitter = RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=300) | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=200) | |
| total_chunks = 0 | |
| # Process each row in the DataFrame | |
| for idx, row in df.iterrows(): | |
| content = str(row['Content']) # Just in case it’s not a string | |
| metadata_str = str(row['Metadata']) | |
| # Convert metadata string back to a dictionary (optional: keep it simple if needed) | |
| metadata = {"metadata": metadata_str} | |
| # Split content into chunks | |
| chunks = text_splitter.split_text(content) | |
| total_chunks += len(chunks) | |
| # Generate embeddings for each chunk | |
| chunk_embeddings = embedding_model.encode(chunks) | |
| # Add each chunk to the Chroma collection | |
| for i, chunk in enumerate(chunks): | |
| collection.add( | |
| documents=[chunk], | |
| metadatas=[metadata], | |
| ids=[f"{idx}_chunk_{i}"], | |
| embeddings=[chunk_embeddings[i]] | |
| ) | |
| # ---------------------- Config ---------------------- | |
| SIMILARITY_THRESHOLD = 0.75 | |
| client1 = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API_KEY) # Replace with your OpenRouter API key | |
| # ---------------------- Models ---------------------- | |
| #semantic_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2") | |
| semantic_model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-mpnet-base-v2") | |
| # Load QA Data | |
| with open("qa.json", "r", encoding="utf-8") as f: | |
| qa_data = json.load(f) | |
| qa_questions = list(qa_data.keys()) | |
| qa_answers = list(qa_data.values()) | |
| qa_embeddings = semantic_model.encode(qa_questions, convert_to_tensor=True) | |
| #-------------------------bm25--------------------------------- | |
| def detect_language(text): | |
| try: | |
| lang = detect(text) | |
| return 'french' if lang.startswith('fr') else 'english' | |
| except: | |
| return 'english' # default fallback | |
| def clean_and_tokenize(text, lang): | |
| tokens = word_tokenize(text.lower(), language=lang) | |
| try: | |
| stop_words = set(stopwords.words(lang)) | |
| return [t for t in tokens if t not in stop_words] | |
| except: | |
| return tokens # fallback if stopwords not found | |
| def rerank_with_bm25(docs, query): | |
| lang = detect_language(query) | |
| tokenized_docs = [clean_and_tokenize(doc['content'], lang) for doc in docs] | |
| bm25 = BM25Okapi(tokenized_docs) | |
| tokenized_query = clean_and_tokenize(query, lang) | |
| scores = bm25.get_scores(tokenized_query) | |
| top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:3] | |
| return [docs[i] for i in top_indices] | |
| # ---------------------- History-Aware CAG ---------------------- | |
| def retrieve_from_cag(user_query): | |
| query_embedding = semantic_model.encode(user_query, convert_to_tensor=True) | |
| cosine_scores = util.cos_sim(query_embedding, qa_embeddings)[0] | |
| best_idx = int(np.argmax(cosine_scores)) | |
| best_score = float(cosine_scores[best_idx]) | |
| print(f"[CAG] Best score: {best_score:.4f} | Closest question: {qa_questions[best_idx]}") | |
| if best_score >= SIMILARITY_THRESHOLD: | |
| return qa_answers[best_idx], best_score # Only return the answer | |
| else: | |
| return None, best_score | |
| # ---------------------- History-Aware RAG ---------------------- | |
| def retrieve_from_rag(user_query): | |
| # Combine history with current query | |
| #history_context = " ".join([f"User: {msg[0]} Bot: {msg[1]}" for msg in chat_history]) + " " | |
| #full_query = history_context + user_query | |
| #full_query= user_query | |
| print("Searching in RAG with history context...") | |
| query_embedding = embedding_model.encode(user_query) | |
| results = collection.query(query_embeddings=[query_embedding], n_results=5) # Get top 5 first | |
| if not results or not results.get('documents'): | |
| return None | |
| # Build docs list | |
| documents = [] | |
| for i, content in enumerate(results['documents'][0]): | |
| metadata = results['metadatas'][0][i] | |
| documents.append({ | |
| "content": content.strip(), | |
| "metadata": metadata | |
| }) | |
| print(metadata) | |
| # Rerank with BM25 | |
| top_docs = rerank_with_bm25(documents, user_query) | |
| print("BM25-selected top 3 documents:", top_docs) | |
| return top_docs | |
| # ---------------------- Generation function (OpenRouter) ---------------------- | |
| def generate_via_openrouter(context, query, chat_history=None): | |
| print("\n--- Generating via OpenRouter ---") | |
| print("Context received:", context) | |
| #- If the answer is not in the documents, simply say: "I don't know." / "Je ne sais pas." | |
| prompt = f"""<s>[INST] | |
| You are a Moodle expert assistant. | |
| Instructions: | |
| - Always respond in the same language as the question. | |
| - Use only the provided documents below to answer. but Do not say things like "the documents mention..." | |
| - Base your answer strictly on the "Documents" section below. Do not make assumptions. | |
| - Cite only the sources you use, indicated at the end of each document like (Source: https://example.com). | |
| - If the context does not provide enough information, give a general helpful answer based on best practices for Moodle. | |
| Documents: | |
| {context} | |
| Question: {query} | |
| Answer: | |
| [/INST] | |
| """ | |
| try: | |
| response = client1.chat.completions.create( | |
| # model="mistralai/mistral-7b-instruct:free", | |
| model="mistralai/mistral-small-3.1-24b-instruct:free", | |
| messages=[{"role": "user", "content": prompt}], | |
| temperature=0.3 | |
| ) | |
| return response.choices[0].message.content.strip() | |
| except Exception as e: | |
| print(f"Erreur lors de la génération : {e}") | |
| return "Erreur lors de la génération." | |
| # ---------------------- Main Chatbot ---------------------- | |
| def chatbot(query, chat_history): | |
| print("\n==== New Query ====") | |
| print("User Query:", query) | |
| # Try to retrieve from CAG (cache) | |
| answer, score = retrieve_from_cag(query) | |
| if answer: | |
| print("Answer retrieved from CAG cache.") | |
| return answer | |
| # If not found, retrieve from RAG | |
| docs = retrieve_from_rag(query) | |
| if docs: | |
| context_blocks = [] | |
| for doc in docs: | |
| content = doc.get("content", "").strip() | |
| metadata = doc.get("metadata") or {} | |
| source = "Source inconnue" | |
| if isinstance(metadata, dict): | |
| source_field = metadata.get("metadata", "") | |
| if isinstance(source_field, str) and source_field.startswith("source:"): | |
| source = source_field.replace("source:", "").strip() | |
| context_blocks.append(f"{content}\n(Source: {source})") | |
| context = "\n\n".join(context_blocks) | |
| # Choose the generation backend (OpenRouter) | |
| response = generate_via_openrouter(context, query) | |
| # chat_history.append((query, response)) # Append the new question-answer pair to history | |
| return response | |
| else: | |
| print("No relevant documents found.") | |
| # chat_history.append((query, "Je ne sais pas.")) | |
| return "Je ne sais pas." | |
| # ---------------------- Gradio App ---------------------- | |
| def save_chat_to_file(chat_history): | |
| timestamp = time.strftime("%Y%m%d-%H%M%S") | |
| filename = f"chat_history_{timestamp}.json" | |
| # Create a temporary file | |
| temp_dir = tempfile.gettempdir() | |
| file_path = os.path.join(temp_dir, filename) | |
| # Write the chat history into the file | |
| with open(file_path, "w", encoding="utf-8") as f: | |
| json.dump(chat_history, f, ensure_ascii=False, indent=2) | |
| return file_path | |
| def ask(user_message, chat_history): | |
| if not user_message: | |
| return chat_history , chat_history, "" | |
| response = chatbot(user_message, chat_history) | |
| chat_history.append((user_message, response)) | |
| return chat_history , chat_history, "" | |
| # Initialize chat history with a welcome messageinitial_message = (None, "Hello, how can I help you with Moodle?") | |
| initial_message = (None, "Hello, how can I help you with Moodle?") | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| chat_history = gr.State([initial_message]) | |
| chatbot_ui = gr.Chatbot(value=[initial_message]) | |
| question = gr.Textbox(placeholder="Ask me anything about Moodle...", show_label=False) | |
| clear_button = gr.Button("Clear") | |
| save_button = gr.Button("Save Chat") | |
| question.submit(ask, [question, chat_history], [chatbot_ui, chat_history, question]) | |
| clear_button.click(lambda: ([initial_message], [initial_message], ""), None, [chatbot_ui, chat_history, question], queue=False) | |
| save_button.click(save_chat_to_file, [chat_history], gr.File(label="Download your chat history")) | |
| demo.queue() | |
| demo.launch(share=False) | |