Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -31,6 +31,22 @@ VALID_ZEROSHOT_VIDEOCLASSIFICATION_MODELS = [
|
|
| 31 |
processor = AutoProcessor.from_pretrained(DEFAULT_MODEL)
|
| 32 |
model = AutoModel.from_pretrained(DEFAULT_MODEL)
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
def select_model(model_name):
|
| 35 |
global processor, model
|
| 36 |
processor = AutoProcessor.from_pretrained(model_name)
|
|
@@ -43,6 +59,8 @@ def predict(youtube_url_or_file_path, labels_text):
|
|
| 43 |
video_path = download_youtube_video(youtube_url_or_file_path)
|
| 44 |
else:
|
| 45 |
video_path = youtube_url_or_file_path
|
|
|
|
|
|
|
| 46 |
num_total_frames = get_num_total_frames(video_path)
|
| 47 |
num_model_input_frames = model.config.vision_config.num_frames
|
| 48 |
if num_total_frames < FRAME_SAMPLING_RATE * num_model_input_frames:
|
|
@@ -60,6 +78,7 @@ def predict(youtube_url_or_file_path, labels_text):
|
|
| 60 |
inputs = processor(
|
| 61 |
text=labels, videos=list(frames), return_tensors="pt", padding=True
|
| 62 |
)
|
|
|
|
| 63 |
with torch.no_grad():
|
| 64 |
outputs = model(**inputs)
|
| 65 |
|
|
@@ -74,7 +93,7 @@ def predict(youtube_url_or_file_path, labels_text):
|
|
| 74 |
app = gr.Blocks()
|
| 75 |
with app:
|
| 76 |
gr.Markdown(
|
| 77 |
-
"# **<p align='center'>
|
| 78 |
)
|
| 79 |
|
| 80 |
with gr.Row():
|
|
@@ -88,7 +107,7 @@ with app:
|
|
| 88 |
model_names_dropdown.change(fn=select_model, inputs=model_names_dropdown)
|
| 89 |
with gr.Tab(label="Youtube URL"):
|
| 90 |
gr.Markdown(
|
| 91 |
-
"### **
|
| 92 |
)
|
| 93 |
youtube_url = gr.Textbox(label="Youtube URL:", show_label=True)
|
| 94 |
youtube_url_labels_text = gr.Textbox(
|
|
@@ -97,7 +116,7 @@ with app:
|
|
| 97 |
youtube_url_predict_btn = gr.Button(value="Predict")
|
| 98 |
with gr.Tab(label="Local File"):
|
| 99 |
gr.Markdown(
|
| 100 |
-
"### **
|
| 101 |
)
|
| 102 |
video_file = gr.Video(label="Video File:", show_label=True)
|
| 103 |
local_video_labels_text = gr.Textbox(
|
|
@@ -112,6 +131,15 @@ with app:
|
|
| 112 |
with gr.Column():
|
| 113 |
predictions = gr.Label(label="Predictions:", show_label=True)
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
youtube_url_predict_btn.click(
|
| 116 |
predict,
|
| 117 |
inputs=[youtube_url, youtube_url_labels_text],
|
|
@@ -122,5 +150,11 @@ with app:
|
|
| 122 |
inputs=[video_file, local_video_labels_text],
|
| 123 |
outputs=[predictions, video_gif],
|
| 124 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
app.launch()
|
|
|
|
| 31 |
processor = AutoProcessor.from_pretrained(DEFAULT_MODEL)
|
| 32 |
model = AutoModel.from_pretrained(DEFAULT_MODEL)
|
| 33 |
|
| 34 |
+
examples = [
|
| 35 |
+
[
|
| 36 |
+
"https://www.youtu.be/l1dBM8ZECao",
|
| 37 |
+
"sleeping dog,cat fight club,birds of prey",
|
| 38 |
+
],
|
| 39 |
+
[
|
| 40 |
+
"https://youtu.be/VMj-3S1tku0",
|
| 41 |
+
"programming course,eating spaghetti,playing football",
|
| 42 |
+
],
|
| 43 |
+
[
|
| 44 |
+
"https://youtu.be/BRw7rvLdGzU",
|
| 45 |
+
"game of thrones,the lord of the rings,vikings",
|
| 46 |
+
],
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
+
|
| 50 |
def select_model(model_name):
|
| 51 |
global processor, model
|
| 52 |
processor = AutoProcessor.from_pretrained(model_name)
|
|
|
|
| 59 |
video_path = download_youtube_video(youtube_url_or_file_path)
|
| 60 |
else:
|
| 61 |
video_path = youtube_url_or_file_path
|
| 62 |
+
|
| 63 |
+
# rearrange sampling rate based on video length and model input length
|
| 64 |
num_total_frames = get_num_total_frames(video_path)
|
| 65 |
num_model_input_frames = model.config.vision_config.num_frames
|
| 66 |
if num_total_frames < FRAME_SAMPLING_RATE * num_model_input_frames:
|
|
|
|
| 78 |
inputs = processor(
|
| 79 |
text=labels, videos=list(frames), return_tensors="pt", padding=True
|
| 80 |
)
|
| 81 |
+
# forward pass
|
| 82 |
with torch.no_grad():
|
| 83 |
outputs = model(**inputs)
|
| 84 |
|
|
|
|
| 93 |
app = gr.Blocks()
|
| 94 |
with app:
|
| 95 |
gr.Markdown(
|
| 96 |
+
"# **<p align='center'>PROGTOG VIOLENCE DETECTION</p>**"
|
| 97 |
)
|
| 98 |
|
| 99 |
with gr.Row():
|
|
|
|
| 107 |
model_names_dropdown.change(fn=select_model, inputs=model_names_dropdown)
|
| 108 |
with gr.Tab(label="Youtube URL"):
|
| 109 |
gr.Markdown(
|
| 110 |
+
"### **Youtube URL**"
|
| 111 |
)
|
| 112 |
youtube_url = gr.Textbox(label="Youtube URL:", show_label=True)
|
| 113 |
youtube_url_labels_text = gr.Textbox(
|
|
|
|
| 116 |
youtube_url_predict_btn = gr.Button(value="Predict")
|
| 117 |
with gr.Tab(label="Local File"):
|
| 118 |
gr.Markdown(
|
| 119 |
+
"### **Tags**"
|
| 120 |
)
|
| 121 |
video_file = gr.Video(label="Video File:", show_label=True)
|
| 122 |
local_video_labels_text = gr.Textbox(
|
|
|
|
| 131 |
with gr.Column():
|
| 132 |
predictions = gr.Label(label="Predictions:", show_label=True)
|
| 133 |
|
| 134 |
+
# gr.Markdown("**Examples:**")
|
| 135 |
+
# gr.Examples(
|
| 136 |
+
# examples,
|
| 137 |
+
# [youtube_url, youtube_url_labels_text],
|
| 138 |
+
# [predictions, video_gif],
|
| 139 |
+
# fn=predict,
|
| 140 |
+
# cache_examples=True,
|
| 141 |
+
# )
|
| 142 |
+
|
| 143 |
youtube_url_predict_btn.click(
|
| 144 |
predict,
|
| 145 |
inputs=[youtube_url, youtube_url_labels_text],
|
|
|
|
| 150 |
inputs=[video_file, local_video_labels_text],
|
| 151 |
outputs=[predictions, video_gif],
|
| 152 |
)
|
| 153 |
+
# gr.Markdown(
|
| 154 |
+
# """
|
| 155 |
+
# \n Demo created by: <a href=\"https://github.com/fcakyon\">fcakyon</a>.
|
| 156 |
+
# <br> Based on this <a href=\"https://huggingface.co/docs/transformers/main/model_doc/xclip">HuggingFace model</a>.
|
| 157 |
+
# """
|
| 158 |
+
# )
|
| 159 |
|
| 160 |
app.launch()
|