Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| import uuid | |
| from pathlib import Path | |
| import numpy as np | |
| from PIL import Image as PILImage | |
| try: # absolute imports when installed | |
| from trackio.file_storage import FileStorage | |
| from trackio.utils import TRACKIO_DIR | |
| except ImportError: # relative imports for local execution on Spaces | |
| from file_storage import FileStorage | |
| from utils import TRACKIO_DIR | |
| class TrackioImage: | |
| """ | |
| Creates an image that can be logged with trackio. | |
| Demo: fake-training-images | |
| """ | |
| TYPE = "trackio.image" | |
| def __init__( | |
| self, value: str | np.ndarray | PILImage.Image, caption: str | None = None | |
| ): | |
| """ | |
| Parameters: | |
| value: A string path to an image, a numpy array, or a PIL Image. | |
| caption: A string caption for the image. | |
| """ | |
| self.caption = caption | |
| self._pil = TrackioImage._as_pil(value) | |
| self._file_path: Path | None = None | |
| self._file_format: str | None = None | |
| def _as_pil(value: str | np.ndarray | PILImage.Image) -> PILImage.Image: | |
| try: | |
| if isinstance(value, str): | |
| return PILImage.open(value).convert("RGBA") | |
| elif isinstance(value, np.ndarray): | |
| arr = np.asarray(value).astype("uint8") | |
| return PILImage.fromarray(arr).convert("RGBA") | |
| elif isinstance(value, PILImage.Image): | |
| return value.convert("RGBA") | |
| except Exception as e: | |
| raise ValueError(f"Failed to process image data: {value}") from e | |
| def _save(self, project: str, run: str, step: int = 0, format: str = "PNG") -> str: | |
| if not self._file_path: | |
| # Save image as {TRACKIO_DIR}/media/{project}/{run}/{step}/{uuid}.{ext} | |
| filename = f"{uuid.uuid4()}.{format.lower()}" | |
| path = FileStorage.save_image( | |
| self._pil, project, run, step, filename, format=format | |
| ) | |
| self._file_path = path.relative_to(TRACKIO_DIR) | |
| self._file_format = format | |
| return str(self._file_path) | |
| def _get_relative_file_path(self) -> Path | None: | |
| return self._file_path | |
| def _get_absolute_file_path(self) -> Path | None: | |
| return TRACKIO_DIR / self._file_path | |
| def _to_dict(self) -> dict: | |
| if not self._file_path: | |
| raise ValueError("Image must be saved to file before serialization") | |
| return { | |
| "_type": self.TYPE, | |
| "file_path": str(self._get_relative_file_path()), | |
| "file_format": self._file_format, | |
| "caption": self.caption, | |
| } | |
| def _from_dict(cls, obj: dict) -> "TrackioImage": | |
| if not isinstance(obj, dict): | |
| raise TypeError(f"Expected dict, got {type(obj).__name__}") | |
| if obj.get("_type") != cls.TYPE: | |
| raise ValueError(f"Wrong _type: {obj.get('_type')!r}") | |
| file_path = obj.get("file_path") | |
| if not isinstance(file_path, str): | |
| raise TypeError( | |
| f"'file_path' must be string, got {type(file_path).__name__}" | |
| ) | |
| absolute_path = TRACKIO_DIR / file_path | |
| try: | |
| if not absolute_path.is_file(): | |
| raise ValueError(f"Image file not found: {file_path}") | |
| pil = PILImage.open(absolute_path).convert("RGBA") | |
| instance = cls(pil, caption=obj.get("caption")) | |
| instance._file_path = Path(file_path) | |
| instance._file_format = obj.get("file_format") | |
| return instance | |
| except Exception as e: | |
| raise ValueError(f"Failed to load image from file: {absolute_path}") from e | |
