Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
+
import tempfile
|
| 5 |
+
import torchaudio
|
| 6 |
+
|
| 7 |
+
# Load Whisper for transcription
|
| 8 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3")
|
| 9 |
+
|
| 10 |
+
# Load grammar scoring model
|
| 11 |
+
cola_model = AutoModelForSequenceClassification.from_pretrained("textattack/roberta-base-CoLA")
|
| 12 |
+
cola_tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-CoLA")
|
| 13 |
+
grammar_pipeline = pipeline("text-classification", model=cola_model, tokenizer=cola_tokenizer)
|
| 14 |
+
|
| 15 |
+
# Load grammar correction model
|
| 16 |
+
correction_pipeline = pipeline("text2text-generation", model="vennify/t5-base-grammar-correction")
|
| 17 |
+
|
| 18 |
+
def process_audio(audio_file):
|
| 19 |
+
# Save uploaded file to temporary path
|
| 20 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
|
| 21 |
+
tmp.write(audio_file.read())
|
| 22 |
+
tmp_path = tmp.name
|
| 23 |
+
|
| 24 |
+
# Transcription
|
| 25 |
+
transcription = asr_pipeline(tmp_path)["text"]
|
| 26 |
+
|
| 27 |
+
# Grammar Scoring
|
| 28 |
+
grammar_result = grammar_pipeline(transcription)[0]
|
| 29 |
+
score_label = grammar_result["label"]
|
| 30 |
+
score_confidence = grammar_result["score"]
|
| 31 |
+
|
| 32 |
+
# Correction
|
| 33 |
+
corrected_text = correction_pipeline(transcription, max_length=128)[0]["generated_text"]
|
| 34 |
+
|
| 35 |
+
return transcription, f"{score_label} ({score_confidence:.2f})", corrected_text
|
| 36 |
+
|
| 37 |
+
# Gradio Interface
|
| 38 |
+
interface = gr.Interface(
|
| 39 |
+
fn=process_audio,
|
| 40 |
+
inputs=gr.Audio(type="file", label="Upload your .wav file"),
|
| 41 |
+
outputs=[
|
| 42 |
+
gr.Textbox(label="Transcription"),
|
| 43 |
+
gr.Textbox(label="Grammar Score"),
|
| 44 |
+
gr.Textbox(label="Grammar Correction")
|
| 45 |
+
],
|
| 46 |
+
title="🎙️ Voice Grammar Scorer",
|
| 47 |
+
description="Upload your voice (WAV file). This app transcribes it, scores grammar, and suggests corrections."
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
if __name__ == "__main__":
|
| 51 |
+
interface.launch()
|