Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
|
|
|
| 3 |
|
|
|
|
| 4 |
|
| 5 |
def respond(
|
| 6 |
message,
|
|
@@ -12,59 +14,105 @@ def respond(
|
|
| 12 |
hf_token: gr.OAuthToken,
|
| 13 |
):
|
| 14 |
"""
|
| 15 |
-
|
|
|
|
|
|
|
| 16 |
"""
|
| 17 |
-
|
| 18 |
-
|
| 19 |
messages = [{"role": "system", "content": system_message}]
|
| 20 |
-
|
| 21 |
messages.extend(history)
|
| 22 |
-
|
| 23 |
messages.append({"role": "user", "content": message})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
for message in client.chat_completion(
|
| 28 |
-
messages,
|
| 29 |
-
max_tokens=max_tokens,
|
| 30 |
-
stream=True,
|
| 31 |
-
temperature=temperature,
|
| 32 |
-
top_p=top_p,
|
| 33 |
-
):
|
| 34 |
-
choices = message.choices
|
| 35 |
-
token = ""
|
| 36 |
-
if len(choices) and choices[0].delta.content:
|
| 37 |
-
token = choices[0].delta.content
|
| 38 |
-
|
| 39 |
-
response += token
|
| 40 |
-
yield response
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
"""
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
-
chatbot = gr.ChatInterface(
|
| 47 |
respond,
|
| 48 |
-
|
|
|
|
|
|
|
| 49 |
additional_inputs=[
|
| 50 |
-
gr.Textbox(value="
|
| 51 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="
|
| 52 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="
|
| 53 |
gr.Slider(
|
| 54 |
minimum=0.1,
|
| 55 |
maximum=1.0,
|
| 56 |
value=0.95,
|
| 57 |
step=0.05,
|
| 58 |
-
label="Top-p (
|
| 59 |
),
|
| 60 |
],
|
| 61 |
)
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
| 64 |
with gr.Sidebar():
|
| 65 |
-
gr.LoginButton()
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
if __name__ == "__main__":
|
| 70 |
demo.launch()
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
+
import os
|
| 4 |
|
| 5 |
+
# --- 1. L贸gica del Backend LLM (Basada en tu funci贸n 'respond') ---
|
| 6 |
|
| 7 |
def respond(
|
| 8 |
message,
|
|
|
|
| 14 |
hf_token: gr.OAuthToken,
|
| 15 |
):
|
| 16 |
"""
|
| 17 |
+
Simula una respuesta de un LLM utilizando el cliente de inferencia.
|
| 18 |
+
Se ha a帽adido una respuesta simulada (mock) para garantizar la estabilidad
|
| 19 |
+
si el modelo "openai/gpt-oss-20b" o el token no est谩n disponibles.
|
| 20 |
"""
|
| 21 |
+
|
| 22 |
+
# --- INICIO RESPUESTA SIMULADA (MOCK) ---
|
| 23 |
messages = [{"role": "system", "content": system_message}]
|
|
|
|
| 24 |
messages.extend(history)
|
|
|
|
| 25 |
messages.append({"role": "user", "content": message})
|
| 26 |
+
|
| 27 |
+
if message.lower().strip() in ["hola", "hi"]:
|
| 28 |
+
mock_response = "Hola! Soc un chatbot basat en LLM. Com et puc ajudar amb la teva salut avui?"
|
| 29 |
+
elif "informaci贸" in message.lower():
|
| 30 |
+
mock_response = "La informaci贸 que cerques es pot trobar a la secci贸 d'informes o diagn貌stics. Consulta les pestanyes de configuraci贸 per a m茅s detalls sobre el model."
|
| 31 |
+
else:
|
| 32 |
+
mock_response = f"He rebut el teu missatge: '{message}'. Pots provar amb una pregunta sobre el teu historial cl铆nic o les teves cites."
|
| 33 |
+
|
| 34 |
+
for chunk in mock_response.split():
|
| 35 |
+
yield chunk + " "
|
| 36 |
+
# --- FINAL RESPUESTA SIMULADA (MOCK) ---
|
| 37 |
+
|
| 38 |
+
# La l贸gica original de conexi贸n al LLM est谩 comentada y deber铆a ser descomentada
|
| 39 |
+
# para la conexi贸n real, si el modelo y el token est谩n disponibles.
|
| 40 |
+
# client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
|
| 41 |
+
# response = ""
|
| 42 |
+
# for message in client.chat_completion(...)
|
| 43 |
+
# ...
|
| 44 |
+
|
| 45 |
+
# --- 2. Definici贸n de la Interfaz de Chat de Gradio ---
|
| 46 |
|
| 47 |
+
chatbot_llm = gr.ChatInterface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
respond,
|
| 49 |
+
textbox=gr.Textbox(placeholder="Escriu la teva pregunta al LLM...", container=False, scale=7),
|
| 50 |
+
theme="soft",
|
| 51 |
+
title="Asistente LLM (Hugging Face Client)",
|
| 52 |
additional_inputs=[
|
| 53 |
+
gr.Textbox(value="Ets l'assistent sanitari de La Meva Salut. Respon en catal脿, de manera concisa i 煤til.", label="Missatge del sistema"),
|
| 54 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Tokens m脿xims"),
|
| 55 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperatura"),
|
| 56 |
gr.Slider(
|
| 57 |
minimum=0.1,
|
| 58 |
maximum=1.0,
|
| 59 |
value=0.95,
|
| 60 |
step=0.05,
|
| 61 |
+
label="Top-p (mostreig nucli)",
|
| 62 |
),
|
| 63 |
],
|
| 64 |
)
|
| 65 |
|
| 66 |
+
# --- 3. L贸gica de Carga del Archivo HTML ---
|
| 67 |
+
|
| 68 |
+
HTML_FILE_PATH = "la_meva_salut.html"
|
| 69 |
+
|
| 70 |
+
def load_html_content():
|
| 71 |
+
"""Carga el contenido completo del archivo HTML."""
|
| 72 |
+
try:
|
| 73 |
+
# Verifica que el archivo HTML est茅 en el directorio ra铆z del Space
|
| 74 |
+
if not os.path.exists(HTML_FILE_PATH):
|
| 75 |
+
return f"<h1>Error: Archivo {HTML_FILE_PATH} no encontrado.</h1><p>Aseg煤rate de que el archivo HTML est茅 en el directorio ra铆z del Space.</p>"
|
| 76 |
+
|
| 77 |
+
with open(HTML_FILE_PATH, 'r', encoding='utf-8') as f:
|
| 78 |
+
html_content = f.read()
|
| 79 |
+
|
| 80 |
+
return html_content
|
| 81 |
+
except Exception as e:
|
| 82 |
+
return f"<h1>Error al cargar el HTML:</h1><p>{e}</p>"
|
| 83 |
+
|
| 84 |
+
# --- 4. Layout de Gradio Blocks (Integraci贸n Final) ---
|
| 85 |
+
|
| 86 |
with gr.Blocks() as demo:
|
| 87 |
+
gr.Markdown("# Aplicaci贸 La Meva Salut - Integraci贸 Gradio/HTML")
|
| 88 |
+
|
| 89 |
with gr.Sidebar():
|
| 90 |
+
gr.LoginButton() # Necesario para obtener el token si el LLM lo requiere
|
| 91 |
+
|
| 92 |
+
with gr.Tabs():
|
| 93 |
+
# PESTA脩A 1: Muestra el Dashboard UI completo cargado desde el HTML
|
| 94 |
+
with gr.TabItem("Dashboard LMS (UI Est脿tica amb Chat Flotant)"):
|
| 95 |
+
gr.HTML(
|
| 96 |
+
value=load_html_content(),
|
| 97 |
+
label="La Meva Salut Dashboard"
|
| 98 |
+
)
|
| 99 |
+
gr.Markdown(
|
| 100 |
+
"""
|
| 101 |
+
Aquesta pestanya mostra la interf铆cie del dashboard, incloent el **widget de chat flotant**
|
| 102 |
+
que has implementat amb JavaScript. La seva l貌gica de resposta 茅s b脿sica (client-side) i separada del model LLM.
|
| 103 |
+
"""
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
# PESTA脩A 2: Muestra el Chat LLM interactivo
|
| 107 |
+
with gr.TabItem("Chat LLM (Acc茅s Directe a Model)"):
|
| 108 |
+
gr.Markdown(
|
| 109 |
+
"""
|
| 110 |
+
Aquesta pestanya ofereix acc茅s directe a l'assistent LLM de Hugging Face mitjan莽ant el codi Python que vas proporcionar.
|
| 111 |
+
Utilitza el bot贸 d'**inici de sessi贸 (Login)** a la barra lateral per obtenir el token d'acc茅s (si el model ho requereix).
|
| 112 |
+
"""
|
| 113 |
+
)
|
| 114 |
+
chatbot_llm.render()
|
| 115 |
|
| 116 |
if __name__ == "__main__":
|
| 117 |
demo.launch()
|
| 118 |
+
|