Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,155 +1,104 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
from fastapi import FastAPI, Request
|
| 4 |
from fastapi.middleware.cors import CORSMiddleware
|
| 5 |
-
import
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
#
|
| 9 |
-
#
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
"""
|
| 15 |
-
messages = [
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
response = ""
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
):
|
| 32 |
-
delta = chunk.choices[0].delta.get("content", "")
|
| 33 |
-
response += delta
|
| 34 |
-
return response.strip()
|
| 35 |
-
except Exception as e:
|
| 36 |
-
return f"⚠️ Error al conectar amb el model: {e}"
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
# ==========================================================
|
| 40 |
-
# 2️⃣ FUNCIÓN PARA GRADIO
|
| 41 |
-
# ==========================================================
|
| 42 |
-
|
| 43 |
-
def respond(
|
| 44 |
-
message,
|
| 45 |
-
history: list[dict[str, str]],
|
| 46 |
-
system_message,
|
| 47 |
-
max_tokens,
|
| 48 |
-
temperature,
|
| 49 |
-
top_p,
|
| 50 |
-
hf_token: gr.OAuthToken,
|
| 51 |
-
):
|
| 52 |
-
"""Función de respuesta para el chat dentro de Gradio."""
|
| 53 |
-
try:
|
| 54 |
-
client = InferenceClient(
|
| 55 |
-
model=MODEL_NAME,
|
| 56 |
-
token=hf_token.token
|
| 57 |
-
)
|
| 58 |
-
messages = [{"role": "system", "content": system_message}]
|
| 59 |
-
messages.extend(history)
|
| 60 |
-
messages.append({"role": "user", "content": message})
|
| 61 |
-
|
| 62 |
-
for chunk in client.chat_completion(
|
| 63 |
-
messages=messages,
|
| 64 |
-
max_tokens=max_tokens,
|
| 65 |
-
temperature=temperature,
|
| 66 |
-
top_p=top_p,
|
| 67 |
-
stream=True,
|
| 68 |
-
):
|
| 69 |
-
delta = chunk.choices[0].delta.get("content", "")
|
| 70 |
-
yield delta
|
| 71 |
-
except Exception as e:
|
| 72 |
-
yield f"⚠️ Error al conectar amb el model: {e}"
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
# ==========================================================
|
| 76 |
-
# 3️⃣ INTERFAZ DE GRADIO (tipo mensajes moderno)
|
| 77 |
-
# ==========================================================
|
| 78 |
-
|
| 79 |
chatbot_llm = gr.ChatInterface(
|
| 80 |
-
|
| 81 |
-
type="messages", # ✅ formato nuevo sin warning
|
| 82 |
textbox=gr.Textbox(placeholder="Escriu la teva pregunta al LLM...", container=False, scale=7),
|
| 83 |
theme="soft",
|
| 84 |
-
title="
|
|
|
|
| 85 |
additional_inputs=[
|
| 86 |
-
gr.Textbox(value="Ets l'assistent sanitari de My
|
| 87 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Tokens màxims"),
|
| 88 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperatura"),
|
| 89 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (mostreig nucli)"),
|
| 90 |
],
|
| 91 |
)
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
# Permitir
|
| 101 |
app.add_middleware(
|
| 102 |
CORSMiddleware,
|
| 103 |
-
allow_origins=["*"],
|
| 104 |
-
allow_credentials=True,
|
| 105 |
allow_methods=["*"],
|
| 106 |
allow_headers=["*"],
|
| 107 |
)
|
| 108 |
|
| 109 |
-
@app.
|
| 110 |
-
async def
|
| 111 |
-
|
| 112 |
-
data = await request.json()
|
| 113 |
-
message = data.get("message", "")
|
| 114 |
-
system_message = data.get("system_message", "Ets l'assistent sanitari de My Health. Respon en català.")
|
| 115 |
-
|
| 116 |
-
if not message:
|
| 117 |
-
return {"response": "⚠️ Missatge buit"}
|
| 118 |
-
|
| 119 |
-
response = generate_llm_response(message, system_message)
|
| 120 |
-
return {"response": response}
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
# ==========================================================
|
| 124 |
-
# 5️⃣ DASHBOARD HTML
|
| 125 |
-
# ==========================================================
|
| 126 |
-
|
| 127 |
-
HTML_FILE_PATH = "My_health.html"
|
| 128 |
-
|
| 129 |
-
def load_html_content():
|
| 130 |
-
if not os.path.exists(HTML_FILE_PATH):
|
| 131 |
-
return "<h1>Error: archivo HTML no encontrado.</h1>"
|
| 132 |
-
with open(HTML_FILE_PATH, "r", encoding="utf-8") as f:
|
| 133 |
-
return f.read()
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
# ==========================================================
|
| 137 |
-
# 6️⃣ GRADIO UI
|
| 138 |
-
# ==========================================================
|
| 139 |
-
|
| 140 |
-
with gr.Blocks() as demo:
|
| 141 |
-
gr.Markdown("# 🩺 My Health - Integració Gradio + API + HTML")
|
| 142 |
-
|
| 143 |
-
with gr.Sidebar():
|
| 144 |
-
gr.LoginButton()
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
with gr.Tabs():
|
| 147 |
-
with gr.TabItem("
|
| 148 |
gr.HTML(value=load_html_content())
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
with gr.TabItem("💬 Chat LLM"):
|
| 152 |
chatbot_llm.render()
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
| 3 |
+
from fastapi import FastAPI
|
|
|
|
| 4 |
from fastapi.middleware.cors import CORSMiddleware
|
| 5 |
+
from fastapi.responses import HTMLResponse
|
| 6 |
+
import uvicorn
|
| 7 |
+
|
| 8 |
+
# ===============================
|
| 9 |
+
# 1️⃣ Función de Respuesta LLM (Mock)
|
| 10 |
+
# ===============================
|
| 11 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
| 12 |
+
"""
|
| 13 |
+
Simula una respuesta de un LLM.
|
| 14 |
+
"""
|
| 15 |
+
messages = [{"role": "system", "content": system_message}]
|
| 16 |
+
messages.extend(history)
|
| 17 |
+
messages.append({"role": "user", "content": message})
|
| 18 |
+
|
| 19 |
+
if message.lower().strip() in ["hola", "hi"]:
|
| 20 |
+
response = "Hola Max 000! Soc un chatbot basat en LLM. Com et puc ajudar amb la teva salut avui?"
|
| 21 |
+
elif "informació" in message.lower():
|
| 22 |
+
response = "La informació que cerques es pot trobar a la secció d'informes o diagnòstics."
|
| 23 |
+
else:
|
| 24 |
+
response = f"He rebut el teu missatge: '{message}'. Prova preguntant sobre cites o historial clínic."
|
| 25 |
+
|
| 26 |
+
return [{"role": "assistant", "content": response}]
|
| 27 |
+
|
| 28 |
+
# ===============================
|
| 29 |
+
# 2️⃣ Gradio Chat Interface
|
| 30 |
+
# ===============================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
chatbot_llm = gr.ChatInterface(
|
| 32 |
+
respond,
|
|
|
|
| 33 |
textbox=gr.Textbox(placeholder="Escriu la teva pregunta al LLM...", container=False, scale=7),
|
| 34 |
theme="soft",
|
| 35 |
+
title="Asistente LLM (Hugging Face Client)",
|
| 36 |
+
type="messages", # ✅ Corrección para evitar warning
|
| 37 |
additional_inputs=[
|
| 38 |
+
gr.Textbox(value="Ets l'assistent sanitari de My health. Respon en català, de manera concisa i útil.", label="Missatge del sistema"),
|
| 39 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Tokens màxims"),
|
| 40 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperatura"),
|
| 41 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (mostreig nucli)"),
|
| 42 |
],
|
| 43 |
)
|
| 44 |
|
| 45 |
+
# ===============================
|
| 46 |
+
# 3️⃣ Función para cargar HTML Dashboard
|
| 47 |
+
# ===============================
|
| 48 |
+
HTML_FILE_PATH = "My_health.html"
|
| 49 |
|
| 50 |
+
def load_html_content():
|
| 51 |
+
try:
|
| 52 |
+
if not os.path.exists(HTML_FILE_PATH):
|
| 53 |
+
return f"<h1>Error: Archivo {HTML_FILE_PATH} no encontrado.</h1>"
|
| 54 |
+
with open(HTML_FILE_PATH, "r", encoding="utf-8") as f:
|
| 55 |
+
return f.read()
|
| 56 |
+
except Exception as e:
|
| 57 |
+
return f"<h1>Error al cargar el HTML:</h1><p>{e}</p>"
|
| 58 |
|
| 59 |
+
# ===============================
|
| 60 |
+
# 4️⃣ FastAPI App para API y HTML
|
| 61 |
+
# ===============================
|
| 62 |
+
app = FastAPI()
|
| 63 |
|
| 64 |
+
# Permitir requests desde cualquier frontend
|
| 65 |
app.add_middleware(
|
| 66 |
CORSMiddleware,
|
| 67 |
+
allow_origins=["*"],
|
|
|
|
| 68 |
allow_methods=["*"],
|
| 69 |
allow_headers=["*"],
|
| 70 |
)
|
| 71 |
|
| 72 |
+
@app.get("/", response_class=HTMLResponse)
|
| 73 |
+
async def home():
|
| 74 |
+
return load_html_content()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
@app.post("/chat")
|
| 77 |
+
async def chat_endpoint(payload: dict):
|
| 78 |
+
message = payload.get("message", "")
|
| 79 |
+
system_message = payload.get("system_message", "Ets l'assistent sanitari de My health. Respon en català, de manera concisa i útil.")
|
| 80 |
+
response = respond(message, history=[], system_message=system_message, max_tokens=512, temperature=0.7, top_p=0.95)
|
| 81 |
+
return {"response": response[0]["content"]}
|
| 82 |
+
|
| 83 |
+
# ===============================
|
| 84 |
+
# 5️⃣ Gradio + FastAPI Integration
|
| 85 |
+
# ===============================
|
| 86 |
+
from fastapi.middleware.wsgi import WSGIMiddleware
|
| 87 |
+
|
| 88 |
+
gradio_app = gr.Blocks()
|
| 89 |
+
with gradio_app:
|
| 90 |
+
gr.Markdown("# Aplicació My Health - Integració Gradio/HTML")
|
| 91 |
with gr.Tabs():
|
| 92 |
+
with gr.TabItem("Dashboard LMS (UI Estàtica amb Chat Flotant)"):
|
| 93 |
gr.HTML(value=load_html_content())
|
| 94 |
+
with gr.TabItem("Chat LLM (Accés Directe a Model)"):
|
|
|
|
|
|
|
| 95 |
chatbot_llm.render()
|
| 96 |
|
| 97 |
+
app.mount("/gradio", WSGIMiddleware(gradio_app))
|
| 98 |
+
|
| 99 |
+
# ===============================
|
| 100 |
+
# 6️⃣ Launch Uvicorn (Red / Contenedor)
|
| 101 |
+
# ===============================
|
| 102 |
+
if __name__ == "__main__":
|
| 103 |
+
port = int(os.environ.get("PORT", 8000))
|
| 104 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|