update app
Browse files
app.py
CHANGED
|
@@ -12,7 +12,7 @@ import spaces
|
|
| 12 |
import torch
|
| 13 |
import numpy as np
|
| 14 |
from PIL import Image
|
| 15 |
-
|
| 16 |
|
| 17 |
from transformers import (
|
| 18 |
Qwen2VLForConditionalGeneration,
|
|
@@ -27,29 +27,35 @@ from gradio.themes.utils import colors, fonts, sizes
|
|
| 27 |
|
| 28 |
# --- Theme and CSS Definition ---
|
| 29 |
|
| 30 |
-
# Define the
|
| 31 |
-
colors.
|
| 32 |
-
name="
|
| 33 |
-
c50="#
|
| 34 |
-
c100="#
|
| 35 |
-
c200="#
|
| 36 |
-
c300="#
|
| 37 |
-
c400="#
|
| 38 |
-
c500="#
|
| 39 |
-
c600="#
|
| 40 |
-
c700="#
|
| 41 |
-
c800="#
|
| 42 |
-
c900="#
|
| 43 |
-
c950="#
|
| 44 |
)
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
-
class
|
| 48 |
def __init__(
|
| 49 |
self,
|
| 50 |
*,
|
| 51 |
primary_hue: colors.Color | str = colors.gray,
|
| 52 |
-
secondary_hue: colors.Color | str = colors.
|
| 53 |
neutral_hue: colors.Color | str = colors.slate,
|
| 54 |
text_size: sizes.Size | str = sizes.text_lg,
|
| 55 |
font: fonts.Font | str | Iterable[fonts.Font | str] = (
|
|
@@ -78,6 +84,12 @@ class SpringGreenTheme(Soft):
|
|
| 78 |
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 79 |
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
|
| 80 |
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
slider_color="*secondary_400",
|
| 82 |
slider_color_dark="*secondary_600",
|
| 83 |
block_title_text_weight="600",
|
|
@@ -90,8 +102,7 @@ class SpringGreenTheme(Soft):
|
|
| 90 |
)
|
| 91 |
|
| 92 |
# Instantiate the new theme
|
| 93 |
-
|
| 94 |
-
|
| 95 |
|
| 96 |
css = """
|
| 97 |
#main-title h1 {
|
|
@@ -100,12 +111,56 @@ css = """
|
|
| 100 |
#output-title h2 {
|
| 101 |
font-size: 2.1em !important;
|
| 102 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
"""
|
| 104 |
|
| 105 |
# Constants for text generation
|
| 106 |
MAX_MAX_NEW_TOKENS = 2048
|
| 107 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 108 |
-
# Increased max_length to accommodate more complex inputs
|
| 109 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192"))
|
| 110 |
|
| 111 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
@@ -153,7 +208,7 @@ model_a = AutoModelForImageTextToText.from_pretrained(
|
|
| 153 |
MODEL_ID_W = "allenai/olmOCR-7B-0725"
|
| 154 |
processor_w = AutoProcessor.from_pretrained(MODEL_ID_W, trust_remote_code=True)
|
| 155 |
model_w = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 156 |
-
MODEL_ID_W,
|
| 157 |
trust_remote_code=True,
|
| 158 |
torch_dtype=torch.float16
|
| 159 |
).to(device).eval()
|
|
@@ -167,6 +222,27 @@ model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
| 167 |
torch_dtype=torch.float16
|
| 168 |
).to(device).eval()
|
| 169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
@spaces.GPU
|
| 172 |
def generate_image(model_name: str, text: str, image: Image.Image,
|
|
@@ -210,9 +286,8 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 210 |
]
|
| 211 |
}]
|
| 212 |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 213 |
-
|
| 214 |
-
# FIX: Set truncation to False
|
| 215 |
-
# The increased MAX_INPUT_TOKEN_LENGTH at the top also helps.
|
| 216 |
inputs = processor(
|
| 217 |
text=[prompt_full],
|
| 218 |
images=[image],
|
|
@@ -231,53 +306,138 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 231 |
time.sleep(0.01)
|
| 232 |
yield buffer, buffer
|
| 233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
-
# Define examples for image inference
|
| 236 |
image_examples = [
|
| 237 |
-
["Extract the full page.", "images/ocr.png"],
|
| 238 |
-
["Extract the content.", "images/4.png"],
|
| 239 |
["Convert this page to doc [table] precisely for markdown.", "images/0.png"]
|
| 240 |
]
|
| 241 |
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
# Create the Gradio Interface
|
| 244 |
-
with gr.Blocks(css=css, theme=
|
| 245 |
gr.Markdown("# **Multimodal OCR**", elem_id="main-title")
|
| 246 |
with gr.Row():
|
| 247 |
with gr.Column(scale=2):
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
with gr.Accordion("Advanced options", open=False):
|
| 256 |
-
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1,
|
| 257 |
-
value=DEFAULT_MAX_NEW_TOKENS)
|
| 258 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
| 259 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 260 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 261 |
-
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05,
|
| 262 |
-
|
| 263 |
-
|
| 264 |
with gr.Column(scale=3):
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
"Aya-Vision-8B", "Qwen2-VL-OCR-2B"],
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
image_submit.click(
|
| 278 |
fn=generate_image,
|
| 279 |
-
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k,
|
| 280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
outputs=[output, markdown_output]
|
| 282 |
)
|
| 283 |
|
|
|
|
| 12 |
import torch
|
| 13 |
import numpy as np
|
| 14 |
from PIL import Image
|
| 15 |
+
import cv2
|
| 16 |
|
| 17 |
from transformers import (
|
| 18 |
Qwen2VLForConditionalGeneration,
|
|
|
|
| 27 |
|
| 28 |
# --- Theme and CSS Definition ---
|
| 29 |
|
| 30 |
+
# Define the Thistle color palette
|
| 31 |
+
colors.thistle = colors.Color(
|
| 32 |
+
name="thistle",
|
| 33 |
+
c50="#F9F5F9",
|
| 34 |
+
c100="#F0E8F1",
|
| 35 |
+
c200="#E7DBE8",
|
| 36 |
+
c300="#DECEE0",
|
| 37 |
+
c400="#D2BFD8",
|
| 38 |
+
c500="#D8BFD8", # Thistle base color
|
| 39 |
+
c600="#B59CB7",
|
| 40 |
+
c700="#927996",
|
| 41 |
+
c800="#6F5675",
|
| 42 |
+
c900="#4C3454",
|
| 43 |
+
c950="#291233",
|
| 44 |
)
|
| 45 |
|
| 46 |
+
colors.red_gray = colors.Color(
|
| 47 |
+
name="red_gray",
|
| 48 |
+
c50="#f7eded", c100="#f5dcdc", c200="#efb4b4", c300="#e78f8f",
|
| 49 |
+
c400="#d96a6a", c500="#c65353", c600="#b24444", c700="#8f3434",
|
| 50 |
+
c800="#732d2d", c900="#5f2626", c950="#4d2020",
|
| 51 |
+
)
|
| 52 |
|
| 53 |
+
class ThistleTheme(Soft):
|
| 54 |
def __init__(
|
| 55 |
self,
|
| 56 |
*,
|
| 57 |
primary_hue: colors.Color | str = colors.gray,
|
| 58 |
+
secondary_hue: colors.Color | str = colors.thistle, # Use the new color
|
| 59 |
neutral_hue: colors.Color | str = colors.slate,
|
| 60 |
text_size: sizes.Size | str = sizes.text_lg,
|
| 61 |
font: fonts.Font | str | Iterable[fonts.Font | str] = (
|
|
|
|
| 84 |
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 85 |
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
|
| 86 |
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 87 |
+
button_secondary_text_color="black",
|
| 88 |
+
button_secondary_text_color_hover="white",
|
| 89 |
+
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
|
| 90 |
+
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
|
| 91 |
+
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
|
| 92 |
+
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
|
| 93 |
slider_color="*secondary_400",
|
| 94 |
slider_color_dark="*secondary_600",
|
| 95 |
block_title_text_weight="600",
|
|
|
|
| 102 |
)
|
| 103 |
|
| 104 |
# Instantiate the new theme
|
| 105 |
+
thistle_theme = ThistleTheme()
|
|
|
|
| 106 |
|
| 107 |
css = """
|
| 108 |
#main-title h1 {
|
|
|
|
| 111 |
#output-title h2 {
|
| 112 |
font-size: 2.1em !important;
|
| 113 |
}
|
| 114 |
+
:root {
|
| 115 |
+
--color-grey-50: #f9fafb;
|
| 116 |
+
--banner-background: var(--secondary-400);
|
| 117 |
+
--banner-text-color: var(--primary-100);
|
| 118 |
+
--banner-background-dark: var(--secondary-800);
|
| 119 |
+
--banner-text-color-dark: var(--primary-100);
|
| 120 |
+
--banner-chrome-height: calc(16px + 43px);
|
| 121 |
+
--chat-chrome-height-wide-no-banner: 320px;
|
| 122 |
+
--chat-chrome-height-narrow-no-banner: 450px;
|
| 123 |
+
--chat-chrome-height-wide: calc(var(--chat-chrome-height-wide-no-banner) + var(--banner-chrome-height));
|
| 124 |
+
--chat-chrome-height-narrow: calc(var(--chat-chrome-height-narrow-no-banner) + var(--banner-chrome-height));
|
| 125 |
+
}
|
| 126 |
+
.banner-message { background-color: var(--banner-background); padding: 5px; margin: 0; border-radius: 5px; border: none; }
|
| 127 |
+
.banner-message-text { font-size: 13px; font-weight: bolder; color: var(--banner-text-color) !important; }
|
| 128 |
+
body.dark .banner-message { background-color: var(--banner-background-dark) !important; }
|
| 129 |
+
body.dark .gradio-container .contain .banner-message .banner-message-text { color: var(--banner-text-color-dark) !important; }
|
| 130 |
+
.toast-body { background-color: var(--color-grey-50); }
|
| 131 |
+
.html-container:has(.css-styles) { padding: 0; margin: 0; }
|
| 132 |
+
.css-styles { height: 0; }
|
| 133 |
+
.model-message { text-align: end; }
|
| 134 |
+
.model-dropdown-container { display: flex; align-items: center; gap: 10px; padding: 0; }
|
| 135 |
+
.user-input-container .multimodal-textbox{ border: none !important; }
|
| 136 |
+
.control-button { height: 51px; }
|
| 137 |
+
button.cancel { border: var(--button-border-width) solid var(--button-cancel-border-color); background: var(--button-cancel-background-fill); color: var(--button-cancel-text-color); box-shadow: var(--button-cancel-shadow); }
|
| 138 |
+
button.cancel:hover, .cancel[disabled] { background: var(--button-cancel-background-fill-hover); color: var(--button-cancel-text-color-hover); }
|
| 139 |
+
.opt-out-message { top: 8px; }
|
| 140 |
+
.opt-out-message .html-container, .opt-out-checkbox label { font-size: 14px !important; padding: 0 !important; margin: 0 !important; color: var(--neutral-400) !important; }
|
| 141 |
+
div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; max-height: 900px !important; }
|
| 142 |
+
div.no-padding { padding: 0 !important; }
|
| 143 |
+
@media (max-width: 1280px) { div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; } }
|
| 144 |
+
@media (max-width: 1024px) {
|
| 145 |
+
.responsive-row { flex-direction: column; }
|
| 146 |
+
.model-message { text-align: start; font-size: 10px !important; }
|
| 147 |
+
.model-dropdown-container { flex-direction: column; align-items: flex-start; }
|
| 148 |
+
div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-narrow)) !important; }
|
| 149 |
+
}
|
| 150 |
+
@media (max-width: 400px) {
|
| 151 |
+
.responsive-row { flex-direction: column; }
|
| 152 |
+
.model-message { text-align: start; font-size: 10px !important; }
|
| 153 |
+
.model-dropdown-container { flex-direction: column; align-items: flex-start; }
|
| 154 |
+
div.block.chatbot { max-height: 360px !important; }
|
| 155 |
+
}
|
| 156 |
+
@media (max-height: 932px) { .chatbot { max-height: 500px !important; } }
|
| 157 |
+
@media (max-height: 1280px) { div.block.chatbot { max-height: 800px !important; } }
|
| 158 |
"""
|
| 159 |
|
| 160 |
# Constants for text generation
|
| 161 |
MAX_MAX_NEW_TOKENS = 2048
|
| 162 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 163 |
+
# Increased max_length to accommodate more complex inputs, especially with multiple images
|
| 164 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192"))
|
| 165 |
|
| 166 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 208 |
MODEL_ID_W = "allenai/olmOCR-7B-0725"
|
| 209 |
processor_w = AutoProcessor.from_pretrained(MODEL_ID_W, trust_remote_code=True)
|
| 210 |
model_w = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 211 |
+
MODEL_ID_W,
|
| 212 |
trust_remote_code=True,
|
| 213 |
torch_dtype=torch.float16
|
| 214 |
).to(device).eval()
|
|
|
|
| 222 |
torch_dtype=torch.float16
|
| 223 |
).to(device).eval()
|
| 224 |
|
| 225 |
+
def downsample_video(video_path):
|
| 226 |
+
"""
|
| 227 |
+
Downsamples the video to evenly spaced frames.
|
| 228 |
+
Each frame is returned as a PIL image along with its timestamp.
|
| 229 |
+
"""
|
| 230 |
+
vidcap = cv2.VideoCapture(video_path)
|
| 231 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 232 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 233 |
+
frames = []
|
| 234 |
+
# Use a maximum of 10 frames to avoid excessive memory usage
|
| 235 |
+
frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
|
| 236 |
+
for i in frame_indices:
|
| 237 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 238 |
+
success, image = vidcap.read()
|
| 239 |
+
if success:
|
| 240 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 241 |
+
pil_image = Image.fromarray(image)
|
| 242 |
+
timestamp = round(i / fps, 2)
|
| 243 |
+
frames.append((pil_image, timestamp))
|
| 244 |
+
vidcap.release()
|
| 245 |
+
return frames
|
| 246 |
|
| 247 |
@spaces.GPU
|
| 248 |
def generate_image(model_name: str, text: str, image: Image.Image,
|
|
|
|
| 286 |
]
|
| 287 |
}]
|
| 288 |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 289 |
+
|
| 290 |
+
# FIX: Set truncation to False to avoid the ValueError
|
|
|
|
| 291 |
inputs = processor(
|
| 292 |
text=[prompt_full],
|
| 293 |
images=[image],
|
|
|
|
| 306 |
time.sleep(0.01)
|
| 307 |
yield buffer, buffer
|
| 308 |
|
| 309 |
+
@spaces.GPU
|
| 310 |
+
def generate_video(model_name: str, text: str, video_path: str,
|
| 311 |
+
max_new_tokens: int = 1024,
|
| 312 |
+
temperature: float = 0.6,
|
| 313 |
+
top_p: float = 0.9,
|
| 314 |
+
top_k: int = 50,
|
| 315 |
+
repetition_penalty: float = 1.2):
|
| 316 |
+
"""
|
| 317 |
+
Generates responses using the selected model for video input.
|
| 318 |
+
Yields raw text and Markdown-formatted text.
|
| 319 |
+
"""
|
| 320 |
+
if model_name == "RolmOCR-7B":
|
| 321 |
+
processor = processor_m
|
| 322 |
+
model = model_m
|
| 323 |
+
elif model_name == "Qwen2-VL-OCR-2B":
|
| 324 |
+
processor = processor_x
|
| 325 |
+
model = model_x
|
| 326 |
+
elif model_name == "Nanonets-OCR2-3B":
|
| 327 |
+
processor = processor_v
|
| 328 |
+
model = model_v
|
| 329 |
+
elif model_name == "Aya-Vision-8B":
|
| 330 |
+
processor = processor_a
|
| 331 |
+
model = model_a
|
| 332 |
+
elif model_name == "olmOCR-7B-0725":
|
| 333 |
+
processor = processor_w
|
| 334 |
+
model = model_w
|
| 335 |
+
else:
|
| 336 |
+
yield "Invalid model selected.", "Invalid model selected."
|
| 337 |
+
return
|
| 338 |
+
|
| 339 |
+
if video_path is None:
|
| 340 |
+
yield "Please upload a video.", "Please upload a video."
|
| 341 |
+
return
|
| 342 |
+
|
| 343 |
+
frames_with_ts = downsample_video(video_path)
|
| 344 |
+
images_for_processor = [frame for frame, ts in frames_with_ts]
|
| 345 |
+
|
| 346 |
+
messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
|
| 347 |
+
for frame in images_for_processor:
|
| 348 |
+
messages[0]["content"].insert(0, {"type": "image"})
|
| 349 |
+
|
| 350 |
+
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 351 |
+
|
| 352 |
+
inputs = processor(
|
| 353 |
+
text=[prompt_full],
|
| 354 |
+
images=images_for_processor,
|
| 355 |
+
return_tensors="pt",
|
| 356 |
+
padding=True
|
| 357 |
+
).to(device)
|
| 358 |
+
|
| 359 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 360 |
+
generation_kwargs = {
|
| 361 |
+
**inputs,
|
| 362 |
+
"streamer": streamer,
|
| 363 |
+
"max_new_tokens": max_new_tokens,
|
| 364 |
+
"do_sample": True,
|
| 365 |
+
"temperature": temperature,
|
| 366 |
+
"top_p": top_p,
|
| 367 |
+
"top_k": top_k,
|
| 368 |
+
"repetition_penalty": repetition_penalty,
|
| 369 |
+
}
|
| 370 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 371 |
+
thread.start()
|
| 372 |
+
buffer = ""
|
| 373 |
+
for new_text in streamer:
|
| 374 |
+
buffer += new_text
|
| 375 |
+
buffer = buffer.replace("<|im_end|>", "")
|
| 376 |
+
time.sleep(0.01)
|
| 377 |
+
yield buffer, buffer
|
| 378 |
|
| 379 |
+
# Define examples for image and video inference
|
| 380 |
image_examples = [
|
| 381 |
+
["Extract the full page.", "images/ocr.png"],
|
| 382 |
+
["Extract the content.", "images/4.png"],
|
| 383 |
["Convert this page to doc [table] precisely for markdown.", "images/0.png"]
|
| 384 |
]
|
| 385 |
|
| 386 |
+
video_examples = [
|
| 387 |
+
["Explain the Ad in Detail.", "videos/1.mp4"],
|
| 388 |
+
]
|
| 389 |
|
| 390 |
# Create the Gradio Interface
|
| 391 |
+
with gr.Blocks(css=css, theme=thistle_theme) as demo:
|
| 392 |
gr.Markdown("# **Multimodal OCR**", elem_id="main-title")
|
| 393 |
with gr.Row():
|
| 394 |
with gr.Column(scale=2):
|
| 395 |
+
with gr.Tabs():
|
| 396 |
+
with gr.TabItem("Image Inference"):
|
| 397 |
+
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 398 |
+
image_upload = gr.Image(type="pil", label="Upload Image", height=290)
|
| 399 |
+
image_submit = gr.Button("Submit", variant="primary")
|
| 400 |
+
gr.Examples(
|
| 401 |
+
examples=image_examples,
|
| 402 |
+
inputs=[image_query, image_upload]
|
| 403 |
+
)
|
| 404 |
+
with gr.TabItem("Video Inference"):
|
| 405 |
+
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 406 |
+
video_upload = gr.Video(label="Upload Video", height=290)
|
| 407 |
+
video_submit = gr.Button("Submit", variant="primary")
|
| 408 |
+
gr.Examples(
|
| 409 |
+
examples=video_examples,
|
| 410 |
+
inputs=[video_query, video_upload]
|
| 411 |
+
)
|
| 412 |
+
gr.Markdown("> Only the olmOCR and RolmOCR models currently support video inference (max video length: 30 secs).")
|
| 413 |
with gr.Accordion("Advanced options", open=False):
|
| 414 |
+
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
|
|
|
| 415 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
| 416 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 417 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 418 |
+
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 419 |
+
|
|
|
|
| 420 |
with gr.Column(scale=3):
|
| 421 |
+
gr.Markdown("## Output", elem_id="output-title")
|
| 422 |
+
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=11, show_copy_button=True)
|
| 423 |
+
with gr.Accordion("(Result.md)", open=False):
|
| 424 |
+
markdown_output = gr.Markdown(label="(Result.Md)")
|
| 425 |
+
|
| 426 |
+
model_choice = gr.Radio(
|
| 427 |
+
choices=["Nanonets-OCR2-3B", "olmOCR-7B-0725", "RolmOCR-7B",
|
| 428 |
"Aya-Vision-8B", "Qwen2-VL-OCR-2B"],
|
| 429 |
+
label="Select Model",
|
| 430 |
+
value="Nanonets-OCR2-3B"
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
image_submit.click(
|
| 434 |
fn=generate_image,
|
| 435 |
+
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 436 |
+
outputs=[output, markdown_output]
|
| 437 |
+
)
|
| 438 |
+
video_submit.click(
|
| 439 |
+
fn=generate_video,
|
| 440 |
+
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 441 |
outputs=[output, markdown_output]
|
| 442 |
)
|
| 443 |
|