|
|
import gradio as gr |
|
|
from transformers.image_utils import load_image |
|
|
from threading import Thread |
|
|
import time |
|
|
import torch |
|
|
import spaces |
|
|
import cv2 |
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
from transformers import ( |
|
|
Qwen2VLForConditionalGeneration, |
|
|
AutoProcessor, |
|
|
TextIteratorStreamer, |
|
|
) |
|
|
from transformers import Qwen2_5_VLForConditionalGeneration |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str: |
|
|
""" |
|
|
Returns an HTML snippet for a thin animated progress bar with a label. |
|
|
Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision. |
|
|
""" |
|
|
return f''' |
|
|
<div style="display: flex; align-items: center;"> |
|
|
<span style="margin-right: 10px; font-size: 14px;">{label}</span> |
|
|
<div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;"> |
|
|
<div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div> |
|
|
</div> |
|
|
</div> |
|
|
<style> |
|
|
@keyframes loading {{ |
|
|
0% {{ transform: translateX(-100%); }} |
|
|
100% {{ transform: translateX(100%); }} |
|
|
}} |
|
|
</style> |
|
|
''' |
|
|
|
|
|
def downsample_video(video_path): |
|
|
""" |
|
|
Downsamples a video file by extracting 10 evenly spaced frames. |
|
|
Returns a list of tuples (PIL.Image, timestamp). |
|
|
""" |
|
|
vidcap = cv2.VideoCapture(video_path) |
|
|
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
|
fps = vidcap.get(cv2.CAP_PROP_FPS) |
|
|
frames = [] |
|
|
if total_frames <= 0 or fps <= 0: |
|
|
vidcap.release() |
|
|
return frames |
|
|
|
|
|
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) |
|
|
for i in frame_indices: |
|
|
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) |
|
|
success, image = vidcap.read() |
|
|
if success: |
|
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
pil_image = Image.fromarray(image) |
|
|
timestamp = round(i / fps, 2) |
|
|
frames.append((pil_image, timestamp)) |
|
|
vidcap.release() |
|
|
return frames |
|
|
|
|
|
|
|
|
|
|
|
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" |
|
|
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True) |
|
|
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
|
QV_MODEL_ID, |
|
|
trust_remote_code=True, |
|
|
torch_dtype=torch.float16 |
|
|
).to("cuda").eval() |
|
|
|
|
|
|
|
|
ROLMOCR_MODEL_ID = "reducto/RolmOCR" |
|
|
rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True) |
|
|
rolmocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained( |
|
|
ROLMOCR_MODEL_ID, |
|
|
trust_remote_code=True, |
|
|
torch_dtype=torch.bfloat16 |
|
|
).to("cuda").eval() |
|
|
|
|
|
|
|
|
@spaces.GPU |
|
|
def model_inference(input_dict, history): |
|
|
text = input_dict["text"].strip() |
|
|
files = input_dict.get("files", []) |
|
|
|
|
|
|
|
|
if text.lower().startswith("@rolmocr"): |
|
|
|
|
|
text_prompt = text[len("@rolmocr"):].strip() |
|
|
|
|
|
if files and isinstance(files[0], str) and files[0].lower().endswith((".mp4", ".avi", ".mov")): |
|
|
video_path = files[0] |
|
|
frames = downsample_video(video_path) |
|
|
if not frames: |
|
|
yield "Error: Could not extract frames from the video." |
|
|
return |
|
|
|
|
|
content_list = [{"type": "text", "text": text_prompt}] |
|
|
for image, timestamp in frames: |
|
|
content_list.append({"type": "text", "text": f"Frame {timestamp}:"}) |
|
|
content_list.append({"type": "image", "image": image}) |
|
|
messages = [{"role": "user", "content": content_list}] |
|
|
|
|
|
video_images = [image for image, _ in frames] |
|
|
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
|
inputs = rolmocr_processor( |
|
|
text=[prompt_full], |
|
|
images=video_images, |
|
|
return_tensors="pt", |
|
|
padding=True, |
|
|
).to("cuda") |
|
|
else: |
|
|
|
|
|
if len(files) > 1: |
|
|
images = [load_image(image) for image in files] |
|
|
elif len(files) == 1: |
|
|
images = [load_image(files[0])] |
|
|
else: |
|
|
images = [] |
|
|
if text_prompt == "" and not images: |
|
|
yield "Error: Please input a text query and/or provide an image for the @RolmOCR feature." |
|
|
return |
|
|
messages = [{ |
|
|
"role": "user", |
|
|
"content": [ |
|
|
*[{"type": "image", "image": image} for image in images], |
|
|
{"type": "text", "text": text_prompt}, |
|
|
], |
|
|
}] |
|
|
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
|
inputs = rolmocr_processor( |
|
|
text=[prompt_full], |
|
|
images=images if images else None, |
|
|
return_tensors="pt", |
|
|
padding=True, |
|
|
).to("cuda") |
|
|
streamer = TextIteratorStreamer(rolmocr_processor, skip_prompt=True, skip_special_tokens=True) |
|
|
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) |
|
|
thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs) |
|
|
thread.start() |
|
|
buffer = "" |
|
|
|
|
|
yield progress_bar_html("Processing with Qwen2.5VL (RolmOCR)") |
|
|
for new_text in streamer: |
|
|
buffer += new_text |
|
|
buffer = buffer.replace("<|im_end|>", "") |
|
|
time.sleep(0.01) |
|
|
yield buffer |
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
if len(files) > 1: |
|
|
images = [load_image(image) for image in files] |
|
|
elif len(files) == 1: |
|
|
images = [load_image(files[0])] |
|
|
else: |
|
|
images = [] |
|
|
|
|
|
if text == "" and not images: |
|
|
yield "Error: Please input a text query and optionally image(s)." |
|
|
return |
|
|
if text == "" and images: |
|
|
yield "Error: Please input a text query along with the image(s)." |
|
|
return |
|
|
|
|
|
messages = [{ |
|
|
"role": "user", |
|
|
"content": [ |
|
|
*[{"type": "image", "image": image} for image in images], |
|
|
{"type": "text", "text": text}, |
|
|
], |
|
|
}] |
|
|
prompt_full = qwen_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
|
inputs = qwen_processor( |
|
|
text=[prompt_full], |
|
|
images=images if images else None, |
|
|
return_tensors="pt", |
|
|
padding=True, |
|
|
).to("cuda") |
|
|
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True) |
|
|
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) |
|
|
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs) |
|
|
thread.start() |
|
|
buffer = "" |
|
|
yield progress_bar_html("Processing with Qwen2VL OCR") |
|
|
for new_text in streamer: |
|
|
buffer += new_text |
|
|
buffer = buffer.replace("<|im_end|>", "") |
|
|
time.sleep(0.01) |
|
|
yield buffer |
|
|
|
|
|
|
|
|
examples = [ |
|
|
[{"text": "@RolmOCR OCR the Text in the Image", "files": ["rolm/1.jpeg"]}], |
|
|
[{"text": "@RolmOCR Explain the Ad in Detail", "files": ["examples/videoplayback.mp4"]}], |
|
|
[{"text": "@RolmOCR OCR the Image", "files": ["rolm/3.jpeg"]}], |
|
|
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}], |
|
|
] |
|
|
|
|
|
demo = gr.ChatInterface( |
|
|
fn=model_inference, |
|
|
description="# **Multimodal OCR `@RolmOCR and Default Qwen2VL OCR`**", |
|
|
examples=examples, |
|
|
textbox=gr.MultimodalTextbox( |
|
|
label="Query Input", |
|
|
file_types=["image", "video"], |
|
|
file_count="multiple", |
|
|
placeholder="Use tag @RolmOCR for RolmOCR, or leave blank for default Qwen2VL OCR" |
|
|
), |
|
|
stop_btn="Stop Generation", |
|
|
multimodal=True, |
|
|
cache_examples=False, |
|
|
) |
|
|
|
|
|
demo.launch(debug=True) |