Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import spaces #[uncomment to use ZeroGPU] | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| import subprocess | |
| from groq import Groq | |
| import base64 | |
| import os | |
| subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True) | |
| # Load FLUX image generator | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_repo_id = "black-forest-labs/FLUX.1-schnell" # Replace to the model you would like to use | |
| lora_path = "matteomarjanovic/flatsketcher" | |
| weigths_file = "lora.safetensors" | |
| if torch.cuda.is_available(): | |
| torch_dtype = torch.float16 | |
| else: | |
| torch_dtype = torch.float32 | |
| pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
| pipe = pipe.to(device) | |
| pipe.load_lora_weights(lora_path, weight_name=weigths_file) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| def encode_image(image_path): | |
| with open(image_path, "rb") as image_file: | |
| return base64.b64encode(image_file.read()).decode('utf-8') | |
| #[uncomment to use ZeroGPU] | |
| def infer( | |
| prompt, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| # seed = random.randint(0, MAX_SEED) | |
| # generator = torch.Generator().manual_seed(seed) | |
| image = pipe( | |
| prompt=prompt, | |
| guidance_scale=0., | |
| num_inference_steps=4, | |
| width=1420, | |
| height=1080, | |
| max_sequence_length=256, | |
| ).images[0] | |
| return image | |
| #[uncomment to use ZeroGPU] | |
| def generate_description_fn( | |
| image, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| base64_image = encode_image(image) | |
| client = Groq( | |
| api_key=os.environ.get("GROQ_API_KEY"), | |
| ) | |
| chat_completion = client.chat.completions.create( | |
| messages=[ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "text", "text": "What's in this image?"}, | |
| { | |
| "type": "image_url", | |
| "image_url": { | |
| "url": f"data:image/jpeg;base64,{base64_image}", | |
| }, | |
| }, | |
| ], | |
| } | |
| ], | |
| model="llama-3.2-11b-vision-preview", | |
| ) | |
| return chat_completion.choices[0].message.content | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| # generated_prompt = "" | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Row(): | |
| with gr.Column(elem_id="col-input-image"): | |
| gr.Markdown(" # Drop your image here") | |
| input_image = gr.Image(type="filepath") | |
| generate_button = gr.Button("Generate", scale=0, variant="primary") | |
| generated_prompt = gr.Markdown("") | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(" # Text-to-Image Gradio Template") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0, variant="primary") | |
| result = gr.Image(label="Result", show_label=False) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| prompt, | |
| ], | |
| outputs=[result], | |
| ) | |
| gr.on( | |
| triggers=[generate_button.click], | |
| fn=generate_description_fn, | |
| inputs=[ | |
| input_image, | |
| ], | |
| outputs=[generated_prompt], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |