Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,16 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
-
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
| 5 |
import io
|
| 6 |
import time
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Set page config
|
| 9 |
st.set_page_config(
|
| 10 |
-
page_title="๐ BLIP-2 Caption Generator",
|
| 11 |
page_icon="๐",
|
| 12 |
layout="wide",
|
| 13 |
initial_sidebar_state="expanded"
|
|
@@ -38,67 +41,225 @@ st.markdown("""
|
|
| 38 |
border-radius: 5px;
|
| 39 |
margin: 1rem 0;
|
| 40 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
</style>
|
| 42 |
""", unsafe_allow_html=True)
|
| 43 |
|
| 44 |
@st.cache_resource
|
| 45 |
-
def
|
| 46 |
-
"""Load and cache the BLIP-2 model and
|
| 47 |
try:
|
| 48 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 49 |
|
| 50 |
-
#
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
model_name,
|
| 56 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 57 |
device_map="auto" if device == "cuda" else None
|
| 58 |
)
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
if device == "cpu":
|
| 61 |
-
|
|
|
|
| 62 |
|
| 63 |
-
return
|
| 64 |
except Exception as e:
|
| 65 |
-
st.error(f"Error loading
|
| 66 |
-
return None, None, None
|
| 67 |
|
| 68 |
-
def
|
| 69 |
-
"""Generate caption for the uploaded image"""
|
| 70 |
try:
|
| 71 |
-
# Prepare inputs
|
| 72 |
if prompt:
|
| 73 |
inputs = processor(image, text=prompt, return_tensors="pt").to(device)
|
| 74 |
else:
|
| 75 |
inputs = processor(image, return_tensors="pt").to(device)
|
| 76 |
|
| 77 |
-
# Generate caption
|
| 78 |
with torch.no_grad():
|
| 79 |
generated_ids = model.generate(
|
| 80 |
**inputs,
|
| 81 |
-
max_length=
|
| 82 |
num_beams=5,
|
| 83 |
temperature=0.7,
|
| 84 |
do_sample=True,
|
| 85 |
early_stopping=True
|
| 86 |
)
|
| 87 |
|
| 88 |
-
# Decode the generated caption
|
| 89 |
caption = processor.decode(generated_ids[0], skip_special_tokens=True)
|
| 90 |
return caption
|
| 91 |
-
|
| 92 |
except Exception as e:
|
| 93 |
st.error(f"Error generating caption: {str(e)}")
|
| 94 |
return None
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
def main():
|
| 97 |
# Header
|
| 98 |
st.markdown("""
|
| 99 |
<div class="main-header">
|
| 100 |
-
<h1>๐ BLIP-2 Caption Generator</h1>
|
| 101 |
-
<p>Upload an image and get AI
|
| 102 |
</div>
|
| 103 |
""", unsafe_allow_html=True)
|
| 104 |
|
|
@@ -106,17 +267,34 @@ def main():
|
|
| 106 |
with st.sidebar:
|
| 107 |
st.header("๐ง Settings")
|
| 108 |
st.markdown("### Model Information")
|
| 109 |
-
st.info("Using **BLIP-2**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
st.markdown("### About")
|
| 112 |
st.markdown("""
|
| 113 |
-
This app uses
|
| 114 |
|
| 115 |
**Features:**
|
| 116 |
-
- ๐ผ๏ธ
|
| 117 |
-
-
|
| 118 |
-
-
|
| 119 |
-
- ๐ฏ
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
""")
|
| 121 |
|
| 122 |
# Main content
|
|
@@ -129,7 +307,7 @@ def main():
|
|
| 129 |
uploaded_file = st.file_uploader(
|
| 130 |
"Choose an image file",
|
| 131 |
type=["jpg", "jpeg", "png", "bmp", "tiff"],
|
| 132 |
-
help="Upload an image
|
| 133 |
)
|
| 134 |
|
| 135 |
if uploaded_file is not None:
|
|
@@ -146,46 +324,131 @@ def main():
|
|
| 146 |
""")
|
| 147 |
|
| 148 |
with col2:
|
| 149 |
-
st.markdown("### ๐ฎ
|
| 150 |
|
| 151 |
if uploaded_file is not None:
|
| 152 |
-
# Load
|
| 153 |
-
with st.spinner("Loading
|
| 154 |
-
|
| 155 |
|
| 156 |
-
if
|
| 157 |
-
#
|
| 158 |
-
if st.button("
|
| 159 |
-
with st.spinner("
|
| 160 |
start_time = time.time()
|
| 161 |
|
| 162 |
-
# Generate caption
|
| 163 |
-
|
| 164 |
-
image,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
)
|
| 166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
end_time = time.time()
|
| 168 |
|
| 169 |
-
if
|
| 170 |
-
#
|
| 171 |
st.markdown(f"""
|
| 172 |
<div class="caption-box">
|
| 173 |
-
<h4>๐ Caption:</h4>
|
| 174 |
-
<p style="font-size: 16px; font-weight: 500;">{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
</div>
|
| 176 |
""", unsafe_allow_html=True)
|
| 177 |
|
| 178 |
# Performance info
|
| 179 |
-
st.success(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
else:
|
| 184 |
-
st.error("Failed to load the
|
| 185 |
else:
|
| 186 |
st.markdown("""
|
| 187 |
<div class="upload-section">
|
| 188 |
<h3>๐ Upload an image to get started</h3>
|
|
|
|
| 189 |
<p>Supported formats: JPG, PNG, BMP, TIFF</p>
|
| 190 |
</div>
|
| 191 |
""", unsafe_allow_html=True)
|
|
@@ -195,7 +458,7 @@ def main():
|
|
| 195 |
st.markdown("""
|
| 196 |
<div style="text-align: center; color: #666;">
|
| 197 |
<p>Built with โค๏ธ using <strong>Streamlit</strong> and <strong>Hugging Face Transformers</strong></p>
|
| 198 |
-
<p>Powered by <strong>BLIP-2</strong> -
|
| 199 |
</div>
|
| 200 |
""", unsafe_allow_html=True)
|
| 201 |
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration, BlipProcessor, BlipForQuestionAnswering
|
| 5 |
import io
|
| 6 |
import time
|
| 7 |
+
import requests
|
| 8 |
+
from typing import List, Dict
|
| 9 |
+
import json
|
| 10 |
|
| 11 |
# Set page config
|
| 12 |
st.set_page_config(
|
| 13 |
+
page_title="๐ Advanced BLIP-2 Caption Generator",
|
| 14 |
page_icon="๐",
|
| 15 |
layout="wide",
|
| 16 |
initial_sidebar_state="expanded"
|
|
|
|
| 41 |
border-radius: 5px;
|
| 42 |
margin: 1rem 0;
|
| 43 |
}
|
| 44 |
+
.analysis-box {
|
| 45 |
+
background-color: #f8f9fa;
|
| 46 |
+
border: 1px solid #dee2e6;
|
| 47 |
+
border-radius: 8px;
|
| 48 |
+
padding: 1rem;
|
| 49 |
+
margin: 0.5rem 0;
|
| 50 |
+
}
|
| 51 |
+
.location-box {
|
| 52 |
+
background-color: #e8f5e8;
|
| 53 |
+
border-left: 4px solid #28a745;
|
| 54 |
+
padding: 1rem;
|
| 55 |
+
border-radius: 5px;
|
| 56 |
+
margin: 1rem 0;
|
| 57 |
+
}
|
| 58 |
+
.objects-box {
|
| 59 |
+
background-color: #fff3cd;
|
| 60 |
+
border-left: 4px solid #ffc107;
|
| 61 |
+
padding: 1rem;
|
| 62 |
+
border-radius: 5px;
|
| 63 |
+
margin: 1rem 0;
|
| 64 |
+
}
|
| 65 |
</style>
|
| 66 |
""", unsafe_allow_html=True)
|
| 67 |
|
| 68 |
@st.cache_resource
|
| 69 |
+
def load_models():
|
| 70 |
+
"""Load and cache the BLIP-2 model and BLIP VQA model"""
|
| 71 |
try:
|
| 72 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 73 |
|
| 74 |
+
# Load BLIP-2 for general captioning
|
| 75 |
+
blip2_model_name = "Salesforce/blip2-opt-2.7b"
|
| 76 |
+
blip2_processor = Blip2Processor.from_pretrained(blip2_model_name)
|
| 77 |
+
blip2_model = Blip2ForConditionalGeneration.from_pretrained(
|
| 78 |
+
blip2_model_name,
|
|
|
|
| 79 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 80 |
device_map="auto" if device == "cuda" else None
|
| 81 |
)
|
| 82 |
|
| 83 |
+
# Load BLIP for Visual Question Answering
|
| 84 |
+
blip_model_name = "Salesforce/blip-vqa-base"
|
| 85 |
+
blip_processor = BlipProcessor.from_pretrained(blip_model_name)
|
| 86 |
+
blip_model = BlipForQuestionAnswering.from_pretrained(
|
| 87 |
+
blip_model_name,
|
| 88 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
if device == "cpu":
|
| 92 |
+
blip2_model = blip2_model.to(device)
|
| 93 |
+
blip_model = blip_model.to(device)
|
| 94 |
|
| 95 |
+
return blip2_processor, blip2_model, blip_processor, blip_model, device
|
| 96 |
except Exception as e:
|
| 97 |
+
st.error(f"Error loading models: {str(e)}")
|
| 98 |
+
return None, None, None, None, None
|
| 99 |
|
| 100 |
+
def generate_basic_caption(image, processor, model, device, prompt=""):
|
| 101 |
+
"""Generate basic caption for the uploaded image"""
|
| 102 |
try:
|
|
|
|
| 103 |
if prompt:
|
| 104 |
inputs = processor(image, text=prompt, return_tensors="pt").to(device)
|
| 105 |
else:
|
| 106 |
inputs = processor(image, return_tensors="pt").to(device)
|
| 107 |
|
|
|
|
| 108 |
with torch.no_grad():
|
| 109 |
generated_ids = model.generate(
|
| 110 |
**inputs,
|
| 111 |
+
max_length=100,
|
| 112 |
num_beams=5,
|
| 113 |
temperature=0.7,
|
| 114 |
do_sample=True,
|
| 115 |
early_stopping=True
|
| 116 |
)
|
| 117 |
|
|
|
|
| 118 |
caption = processor.decode(generated_ids[0], skip_special_tokens=True)
|
| 119 |
return caption
|
|
|
|
| 120 |
except Exception as e:
|
| 121 |
st.error(f"Error generating caption: {str(e)}")
|
| 122 |
return None
|
| 123 |
|
| 124 |
+
def ask_visual_question(image, question, processor, model, device):
|
| 125 |
+
"""Ask specific questions about the image using BLIP VQA"""
|
| 126 |
+
try:
|
| 127 |
+
inputs = processor(image, question, return_tensors="pt").to(device)
|
| 128 |
+
|
| 129 |
+
with torch.no_grad():
|
| 130 |
+
out = model.generate(**inputs, max_length=50, num_beams=3)
|
| 131 |
+
|
| 132 |
+
answer = processor.decode(out[0], skip_special_tokens=True)
|
| 133 |
+
return answer
|
| 134 |
+
except Exception as e:
|
| 135 |
+
return "Unable to determine"
|
| 136 |
+
|
| 137 |
+
def analyze_location_and_objects(image, blip_processor, blip_model, device):
|
| 138 |
+
"""Analyze image for locations, landmarks, and objects"""
|
| 139 |
+
location_questions = [
|
| 140 |
+
"What country is this?",
|
| 141 |
+
"What city is this?",
|
| 142 |
+
"What landmark is this?",
|
| 143 |
+
"Where is this place?",
|
| 144 |
+
"What famous building is this?",
|
| 145 |
+
"What monument is this?",
|
| 146 |
+
"What geographical location is shown?",
|
| 147 |
+
"What tourist attraction is this?",
|
| 148 |
+
"What state or province is this?",
|
| 149 |
+
"What region is this?",
|
| 150 |
+
"What continent is this in?",
|
| 151 |
+
"What neighborhood is this?",
|
| 152 |
+
"What district is this?",
|
| 153 |
+
"What area is this?"
|
| 154 |
+
]
|
| 155 |
+
|
| 156 |
+
object_questions = [
|
| 157 |
+
"What objects can you see in this image?",
|
| 158 |
+
"What are the main things in this picture?",
|
| 159 |
+
"What vehicles are in this image?",
|
| 160 |
+
"What buildings are visible?",
|
| 161 |
+
"What natural features are shown?",
|
| 162 |
+
"What people are doing in this image?",
|
| 163 |
+
"What animals are in this picture?",
|
| 164 |
+
"What food items can you see?",
|
| 165 |
+
"What clothing can you see?",
|
| 166 |
+
"What activities are happening?",
|
| 167 |
+
"What weather is shown?",
|
| 168 |
+
"What time of day is it?",
|
| 169 |
+
"What season does this appear to be?",
|
| 170 |
+
"What colors dominate this image?"
|
| 171 |
+
]
|
| 172 |
+
|
| 173 |
+
architectural_questions = [
|
| 174 |
+
"What type of architecture is this?",
|
| 175 |
+
"What style of building is this?",
|
| 176 |
+
"What historical period does this represent?",
|
| 177 |
+
"What cultural elements are visible?",
|
| 178 |
+
"What materials is this building made of?",
|
| 179 |
+
"What architectural features are prominent?",
|
| 180 |
+
"What type of structure is this?",
|
| 181 |
+
"What design style is shown?"
|
| 182 |
+
]
|
| 183 |
+
|
| 184 |
+
location_info = {}
|
| 185 |
+
object_info = {}
|
| 186 |
+
architectural_info = {}
|
| 187 |
+
|
| 188 |
+
# Analyze locations
|
| 189 |
+
for question in location_questions:
|
| 190 |
+
answer = ask_visual_question(image, question, blip_processor, blip_model, device)
|
| 191 |
+
if answer and answer.lower() not in ["no", "none", "unable to determine", "unknown", "unanswerable"]:
|
| 192 |
+
location_info[question] = answer
|
| 193 |
+
|
| 194 |
+
# Analyze objects
|
| 195 |
+
for question in object_questions:
|
| 196 |
+
answer = ask_visual_question(image, question, blip_processor, blip_model, device)
|
| 197 |
+
if answer and answer.lower() not in ["no", "none", "unable to determine", "unknown", "unanswerable"]:
|
| 198 |
+
object_info[question] = answer
|
| 199 |
+
|
| 200 |
+
# Analyze architecture
|
| 201 |
+
for question in architectural_questions:
|
| 202 |
+
answer = ask_visual_question(image, question, blip_processor, blip_model, device)
|
| 203 |
+
if answer and answer.lower() not in ["no", "none", "unable to determine", "unknown", "unanswerable"]:
|
| 204 |
+
architectural_info[question] = answer
|
| 205 |
+
|
| 206 |
+
return location_info, object_info, architectural_info
|
| 207 |
+
|
| 208 |
+
def generate_enhanced_caption(basic_caption, location_info, object_info, architectural_info):
|
| 209 |
+
"""Generate enhanced caption combining all analysis"""
|
| 210 |
+
enhanced_parts = [basic_caption]
|
| 211 |
+
|
| 212 |
+
if location_info:
|
| 213 |
+
location_details = []
|
| 214 |
+
for question, answer in location_info.items():
|
| 215 |
+
if "country" in question.lower():
|
| 216 |
+
location_details.append(f"Located in {answer}")
|
| 217 |
+
elif "city" in question.lower():
|
| 218 |
+
location_details.append(f"in {answer}")
|
| 219 |
+
elif "landmark" in question.lower() or "monument" in question.lower():
|
| 220 |
+
location_details.append(f"showing {answer}")
|
| 221 |
+
elif "building" in question.lower():
|
| 222 |
+
location_details.append(f"featuring {answer}")
|
| 223 |
+
elif "state" in question.lower() or "province" in question.lower():
|
| 224 |
+
location_details.append(f"in {answer}")
|
| 225 |
+
elif "region" in question.lower():
|
| 226 |
+
location_details.append(f"in the {answer} region")
|
| 227 |
+
|
| 228 |
+
if location_details:
|
| 229 |
+
enhanced_parts.append(" ".join(location_details[:3])) # Limit to avoid too long captions
|
| 230 |
+
|
| 231 |
+
if architectural_info:
|
| 232 |
+
arch_details = []
|
| 233 |
+
for question, answer in architectural_info.items():
|
| 234 |
+
if "architecture" in question.lower() or "style" in question.lower():
|
| 235 |
+
arch_details.append(f"The architecture appears to be {answer}")
|
| 236 |
+
elif "period" in question.lower():
|
| 237 |
+
arch_details.append(f"from the {answer} period")
|
| 238 |
+
|
| 239 |
+
if arch_details:
|
| 240 |
+
enhanced_parts.append(" ".join(arch_details[:2]))
|
| 241 |
+
|
| 242 |
+
if object_info:
|
| 243 |
+
obj_details = []
|
| 244 |
+
for question, answer in object_info.items():
|
| 245 |
+
if "time of day" in question.lower():
|
| 246 |
+
obj_details.append(f"taken during {answer}")
|
| 247 |
+
elif "weather" in question.lower():
|
| 248 |
+
obj_details.append(f"in {answer} weather")
|
| 249 |
+
elif "season" in question.lower():
|
| 250 |
+
obj_details.append(f"during {answer}")
|
| 251 |
+
|
| 252 |
+
if obj_details:
|
| 253 |
+
enhanced_parts.append(" ".join(obj_details[:2]))
|
| 254 |
+
|
| 255 |
+
return ". ".join(enhanced_parts) + "."
|
| 256 |
+
|
| 257 |
def main():
|
| 258 |
# Header
|
| 259 |
st.markdown("""
|
| 260 |
<div class="main-header">
|
| 261 |
+
<h1>๐ Advanced BLIP-2 Caption Generator</h1>
|
| 262 |
+
<p>Upload an image and get comprehensive AI analysis including locations, landmarks, and objects!</p>
|
| 263 |
</div>
|
| 264 |
""", unsafe_allow_html=True)
|
| 265 |
|
|
|
|
| 267 |
with st.sidebar:
|
| 268 |
st.header("๐ง Settings")
|
| 269 |
st.markdown("### Model Information")
|
| 270 |
+
st.info("Using **BLIP-2** + **BLIP-VQA** for comprehensive analysis")
|
| 271 |
+
|
| 272 |
+
# Analysis options
|
| 273 |
+
st.markdown("### Analysis Options")
|
| 274 |
+
include_location = st.checkbox("๐ Location Analysis", value=True)
|
| 275 |
+
include_objects = st.checkbox("๐ฏ Object Detection", value=True)
|
| 276 |
+
include_architecture = st.checkbox("๐๏ธ Architecture Analysis", value=True)
|
| 277 |
+
|
| 278 |
+
# Custom questions
|
| 279 |
+
st.markdown("### Custom Questions")
|
| 280 |
+
custom_question = st.text_input(
|
| 281 |
+
"Ask about the image:",
|
| 282 |
+
placeholder="e.g., What time of day is this?"
|
| 283 |
+
)
|
| 284 |
|
| 285 |
st.markdown("### About")
|
| 286 |
st.markdown("""
|
| 287 |
+
This enhanced app uses multiple AI models:
|
| 288 |
|
| 289 |
**Features:**
|
| 290 |
+
- ๐ผ๏ธ Basic image captioning
|
| 291 |
+
- ๐ Country & city recognition
|
| 292 |
+
- ๐๏ธ Landmark identification
|
| 293 |
+
- ๐ฏ Object detection
|
| 294 |
+
- ๐๏ธ Architecture analysis
|
| 295 |
+
- โ Custom Q&A
|
| 296 |
+
- ๐ State/Province detection
|
| 297 |
+
- ๐ Neighborhood analysis
|
| 298 |
""")
|
| 299 |
|
| 300 |
# Main content
|
|
|
|
| 307 |
uploaded_file = st.file_uploader(
|
| 308 |
"Choose an image file",
|
| 309 |
type=["jpg", "jpeg", "png", "bmp", "tiff"],
|
| 310 |
+
help="Upload an image for comprehensive analysis"
|
| 311 |
)
|
| 312 |
|
| 313 |
if uploaded_file is not None:
|
|
|
|
| 324 |
""")
|
| 325 |
|
| 326 |
with col2:
|
| 327 |
+
st.markdown("### ๐ฎ AI Analysis Results")
|
| 328 |
|
| 329 |
if uploaded_file is not None:
|
| 330 |
+
# Load models
|
| 331 |
+
with st.spinner("Loading AI models..."):
|
| 332 |
+
blip2_processor, blip2_model, blip_processor, blip_model, device = load_models()
|
| 333 |
|
| 334 |
+
if all([blip2_processor, blip2_model, blip_processor, blip_model]):
|
| 335 |
+
# Analyze button
|
| 336 |
+
if st.button("๐ Analyze Image", type="primary"):
|
| 337 |
+
with st.spinner("Performing comprehensive analysis..."):
|
| 338 |
start_time = time.time()
|
| 339 |
|
| 340 |
+
# Generate basic caption
|
| 341 |
+
basic_caption = generate_basic_caption(
|
| 342 |
+
image, blip2_processor, blip2_model, device
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
# Analyze for locations and objects
|
| 346 |
+
location_info, object_info, architectural_info = analyze_location_and_objects(
|
| 347 |
+
image, blip_processor, blip_model, device
|
| 348 |
)
|
| 349 |
|
| 350 |
+
# Custom question
|
| 351 |
+
custom_answer = None
|
| 352 |
+
if custom_question:
|
| 353 |
+
custom_answer = ask_visual_question(
|
| 354 |
+
image, custom_question, blip_processor, blip_model, device
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
end_time = time.time()
|
| 358 |
|
| 359 |
+
if basic_caption:
|
| 360 |
+
# Basic Caption
|
| 361 |
st.markdown(f"""
|
| 362 |
<div class="caption-box">
|
| 363 |
+
<h4>๐ Basic Caption:</h4>
|
| 364 |
+
<p style="font-size: 16px; font-weight: 500;">{basic_caption}</p>
|
| 365 |
+
</div>
|
| 366 |
+
""", unsafe_allow_html=True)
|
| 367 |
+
|
| 368 |
+
# Location Analysis
|
| 369 |
+
if include_location and location_info:
|
| 370 |
+
st.markdown("""
|
| 371 |
+
<div class="location-box">
|
| 372 |
+
<h4>๐ Location Analysis:</h4>
|
| 373 |
+
</div>
|
| 374 |
+
""", unsafe_allow_html=True)
|
| 375 |
+
|
| 376 |
+
for question, answer in location_info.items():
|
| 377 |
+
st.write(f"**{question}** {answer}")
|
| 378 |
+
|
| 379 |
+
# Object Analysis
|
| 380 |
+
if include_objects and object_info:
|
| 381 |
+
st.markdown("""
|
| 382 |
+
<div class="objects-box">
|
| 383 |
+
<h4>๐ฏ Object Analysis:</h4>
|
| 384 |
+
</div>
|
| 385 |
+
""", unsafe_allow_html=True)
|
| 386 |
+
|
| 387 |
+
for question, answer in object_info.items():
|
| 388 |
+
st.write(f"**{question}** {answer}")
|
| 389 |
+
|
| 390 |
+
# Architecture Analysis
|
| 391 |
+
if include_architecture and architectural_info:
|
| 392 |
+
st.markdown("""
|
| 393 |
+
<div class="analysis-box">
|
| 394 |
+
<h4>๐๏ธ Architecture Analysis:</h4>
|
| 395 |
+
</div>
|
| 396 |
+
""", unsafe_allow_html=True)
|
| 397 |
+
|
| 398 |
+
for question, answer in architectural_info.items():
|
| 399 |
+
st.write(f"**{question}** {answer}")
|
| 400 |
+
|
| 401 |
+
# Custom Question Answer
|
| 402 |
+
if custom_answer:
|
| 403 |
+
st.markdown(f"""
|
| 404 |
+
<div class="analysis-box">
|
| 405 |
+
<h4>โ Custom Question:</h4>
|
| 406 |
+
<p><strong>Q:</strong> {custom_question}</p>
|
| 407 |
+
<p><strong>A:</strong> {custom_answer}</p>
|
| 408 |
+
</div>
|
| 409 |
+
""", unsafe_allow_html=True)
|
| 410 |
+
|
| 411 |
+
# Enhanced Caption
|
| 412 |
+
enhanced_caption = generate_enhanced_caption(
|
| 413 |
+
basic_caption, location_info, object_info, architectural_info
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
st.markdown(f"""
|
| 417 |
+
<div class="caption-box" style="border-left-color: #28a745;">
|
| 418 |
+
<h4>โจ Enhanced Caption:</h4>
|
| 419 |
+
<p style="font-size: 16px; font-weight: 500;">{enhanced_caption}</p>
|
| 420 |
</div>
|
| 421 |
""", unsafe_allow_html=True)
|
| 422 |
|
| 423 |
# Performance info
|
| 424 |
+
st.success(f"Analysis completed in {end_time - start_time:.2f} seconds")
|
| 425 |
+
|
| 426 |
+
# Copy caption to clipboard
|
| 427 |
+
st.code(enhanced_caption, language=None)
|
| 428 |
+
|
| 429 |
+
# Export options
|
| 430 |
+
analysis_data = {
|
| 431 |
+
"basic_caption": basic_caption,
|
| 432 |
+
"enhanced_caption": enhanced_caption,
|
| 433 |
+
"location_info": location_info if include_location else {},
|
| 434 |
+
"object_info": object_info if include_objects else {},
|
| 435 |
+
"architectural_info": architectural_info if include_architecture else {},
|
| 436 |
+
"custom_qa": {"question": custom_question, "answer": custom_answer} if custom_answer else None
|
| 437 |
+
}
|
| 438 |
|
| 439 |
+
st.download_button(
|
| 440 |
+
label="๐ Download Analysis (JSON)",
|
| 441 |
+
data=json.dumps(analysis_data, indent=2),
|
| 442 |
+
file_name=f"image_analysis_{int(time.time())}.json",
|
| 443 |
+
mime="application/json"
|
| 444 |
+
)
|
| 445 |
else:
|
| 446 |
+
st.error("Failed to load the models. Please try refreshing the page.")
|
| 447 |
else:
|
| 448 |
st.markdown("""
|
| 449 |
<div class="upload-section">
|
| 450 |
<h3>๐ Upload an image to get started</h3>
|
| 451 |
+
<p>Get comprehensive AI analysis including locations, landmarks, and objects!</p>
|
| 452 |
<p>Supported formats: JPG, PNG, BMP, TIFF</p>
|
| 453 |
</div>
|
| 454 |
""", unsafe_allow_html=True)
|
|
|
|
| 458 |
st.markdown("""
|
| 459 |
<div style="text-align: center; color: #666;">
|
| 460 |
<p>Built with โค๏ธ using <strong>Streamlit</strong> and <strong>Hugging Face Transformers</strong></p>
|
| 461 |
+
<p>Powered by <strong>BLIP-2</strong> and <strong>BLIP-VQA</strong> for comprehensive image understanding</p>
|
| 462 |
</div>
|
| 463 |
""", unsafe_allow_html=True)
|
| 464 |
|