Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,16 +1,13 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
-
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
| 5 |
import io
|
| 6 |
import time
|
| 7 |
-
import requests
|
| 8 |
-
from typing import List, Dict
|
| 9 |
-
import json
|
| 10 |
|
| 11 |
# Set page config
|
| 12 |
st.set_page_config(
|
| 13 |
-
page_title="๐
|
| 14 |
page_icon="๐",
|
| 15 |
layout="wide",
|
| 16 |
initial_sidebar_state="expanded"
|
|
@@ -41,225 +38,67 @@ st.markdown("""
|
|
| 41 |
border-radius: 5px;
|
| 42 |
margin: 1rem 0;
|
| 43 |
}
|
| 44 |
-
.analysis-box {
|
| 45 |
-
background-color: #f8f9fa;
|
| 46 |
-
border: 1px solid #dee2e6;
|
| 47 |
-
border-radius: 8px;
|
| 48 |
-
padding: 1rem;
|
| 49 |
-
margin: 0.5rem 0;
|
| 50 |
-
}
|
| 51 |
-
.location-box {
|
| 52 |
-
background-color: #e8f5e8;
|
| 53 |
-
border-left: 4px solid #28a745;
|
| 54 |
-
padding: 1rem;
|
| 55 |
-
border-radius: 5px;
|
| 56 |
-
margin: 1rem 0;
|
| 57 |
-
}
|
| 58 |
-
.objects-box {
|
| 59 |
-
background-color: #fff3cd;
|
| 60 |
-
border-left: 4px solid #ffc107;
|
| 61 |
-
padding: 1rem;
|
| 62 |
-
border-radius: 5px;
|
| 63 |
-
margin: 1rem 0;
|
| 64 |
-
}
|
| 65 |
</style>
|
| 66 |
""", unsafe_allow_html=True)
|
| 67 |
|
| 68 |
@st.cache_resource
|
| 69 |
-
def
|
| 70 |
-
"""Load and cache the BLIP-2 model and
|
| 71 |
try:
|
| 72 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 73 |
|
| 74 |
-
#
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
| 79 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 80 |
device_map="auto" if device == "cuda" else None
|
| 81 |
)
|
| 82 |
|
| 83 |
-
# Load BLIP for Visual Question Answering
|
| 84 |
-
blip_model_name = "Salesforce/blip-vqa-base"
|
| 85 |
-
blip_processor = BlipProcessor.from_pretrained(blip_model_name)
|
| 86 |
-
blip_model = BlipForQuestionAnswering.from_pretrained(
|
| 87 |
-
blip_model_name,
|
| 88 |
-
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
| 89 |
-
)
|
| 90 |
-
|
| 91 |
if device == "cpu":
|
| 92 |
-
|
| 93 |
-
blip_model = blip_model.to(device)
|
| 94 |
|
| 95 |
-
return
|
| 96 |
except Exception as e:
|
| 97 |
-
st.error(f"Error loading
|
| 98 |
-
return None, None, None
|
| 99 |
|
| 100 |
-
def
|
| 101 |
-
"""Generate
|
| 102 |
try:
|
|
|
|
| 103 |
if prompt:
|
| 104 |
inputs = processor(image, text=prompt, return_tensors="pt").to(device)
|
| 105 |
else:
|
| 106 |
inputs = processor(image, return_tensors="pt").to(device)
|
| 107 |
|
|
|
|
| 108 |
with torch.no_grad():
|
| 109 |
generated_ids = model.generate(
|
| 110 |
**inputs,
|
| 111 |
-
max_length=
|
| 112 |
num_beams=5,
|
| 113 |
temperature=0.7,
|
| 114 |
do_sample=True,
|
| 115 |
early_stopping=True
|
| 116 |
)
|
| 117 |
|
|
|
|
| 118 |
caption = processor.decode(generated_ids[0], skip_special_tokens=True)
|
| 119 |
return caption
|
|
|
|
| 120 |
except Exception as e:
|
| 121 |
st.error(f"Error generating caption: {str(e)}")
|
| 122 |
return None
|
| 123 |
|
| 124 |
-
def ask_visual_question(image, question, processor, model, device):
|
| 125 |
-
"""Ask specific questions about the image using BLIP VQA"""
|
| 126 |
-
try:
|
| 127 |
-
inputs = processor(image, question, return_tensors="pt").to(device)
|
| 128 |
-
|
| 129 |
-
with torch.no_grad():
|
| 130 |
-
out = model.generate(**inputs, max_length=50, num_beams=3)
|
| 131 |
-
|
| 132 |
-
answer = processor.decode(out[0], skip_special_tokens=True)
|
| 133 |
-
return answer
|
| 134 |
-
except Exception as e:
|
| 135 |
-
return "Unable to determine"
|
| 136 |
-
|
| 137 |
-
def analyze_location_and_objects(image, blip_processor, blip_model, device):
|
| 138 |
-
"""Analyze image for locations, landmarks, and objects"""
|
| 139 |
-
location_questions = [
|
| 140 |
-
"What country is this?",
|
| 141 |
-
"What city is this?",
|
| 142 |
-
"What landmark is this?",
|
| 143 |
-
"Where is this place?",
|
| 144 |
-
"What famous building is this?",
|
| 145 |
-
"What monument is this?",
|
| 146 |
-
"What geographical location is shown?",
|
| 147 |
-
"What tourist attraction is this?",
|
| 148 |
-
"What state or province is this?",
|
| 149 |
-
"What region is this?",
|
| 150 |
-
"What continent is this in?",
|
| 151 |
-
"What neighborhood is this?",
|
| 152 |
-
"What district is this?",
|
| 153 |
-
"What area is this?"
|
| 154 |
-
]
|
| 155 |
-
|
| 156 |
-
object_questions = [
|
| 157 |
-
"What objects can you see in this image?",
|
| 158 |
-
"What are the main things in this picture?",
|
| 159 |
-
"What vehicles are in this image?",
|
| 160 |
-
"What buildings are visible?",
|
| 161 |
-
"What natural features are shown?",
|
| 162 |
-
"What people are doing in this image?",
|
| 163 |
-
"What animals are in this picture?",
|
| 164 |
-
"What food items can you see?",
|
| 165 |
-
"What clothing can you see?",
|
| 166 |
-
"What activities are happening?",
|
| 167 |
-
"What weather is shown?",
|
| 168 |
-
"What time of day is it?",
|
| 169 |
-
"What season does this appear to be?",
|
| 170 |
-
"What colors dominate this image?"
|
| 171 |
-
]
|
| 172 |
-
|
| 173 |
-
architectural_questions = [
|
| 174 |
-
"What type of architecture is this?",
|
| 175 |
-
"What style of building is this?",
|
| 176 |
-
"What historical period does this represent?",
|
| 177 |
-
"What cultural elements are visible?",
|
| 178 |
-
"What materials is this building made of?",
|
| 179 |
-
"What architectural features are prominent?",
|
| 180 |
-
"What type of structure is this?",
|
| 181 |
-
"What design style is shown?"
|
| 182 |
-
]
|
| 183 |
-
|
| 184 |
-
location_info = {}
|
| 185 |
-
object_info = {}
|
| 186 |
-
architectural_info = {}
|
| 187 |
-
|
| 188 |
-
# Analyze locations
|
| 189 |
-
for question in location_questions:
|
| 190 |
-
answer = ask_visual_question(image, question, blip_processor, blip_model, device)
|
| 191 |
-
if answer and answer.lower() not in ["no", "none", "unable to determine", "unknown", "unanswerable"]:
|
| 192 |
-
location_info[question] = answer
|
| 193 |
-
|
| 194 |
-
# Analyze objects
|
| 195 |
-
for question in object_questions:
|
| 196 |
-
answer = ask_visual_question(image, question, blip_processor, blip_model, device)
|
| 197 |
-
if answer and answer.lower() not in ["no", "none", "unable to determine", "unknown", "unanswerable"]:
|
| 198 |
-
object_info[question] = answer
|
| 199 |
-
|
| 200 |
-
# Analyze architecture
|
| 201 |
-
for question in architectural_questions:
|
| 202 |
-
answer = ask_visual_question(image, question, blip_processor, blip_model, device)
|
| 203 |
-
if answer and answer.lower() not in ["no", "none", "unable to determine", "unknown", "unanswerable"]:
|
| 204 |
-
architectural_info[question] = answer
|
| 205 |
-
|
| 206 |
-
return location_info, object_info, architectural_info
|
| 207 |
-
|
| 208 |
-
def generate_enhanced_caption(basic_caption, location_info, object_info, architectural_info):
|
| 209 |
-
"""Generate enhanced caption combining all analysis"""
|
| 210 |
-
enhanced_parts = [basic_caption]
|
| 211 |
-
|
| 212 |
-
if location_info:
|
| 213 |
-
location_details = []
|
| 214 |
-
for question, answer in location_info.items():
|
| 215 |
-
if "country" in question.lower():
|
| 216 |
-
location_details.append(f"Located in {answer}")
|
| 217 |
-
elif "city" in question.lower():
|
| 218 |
-
location_details.append(f"in {answer}")
|
| 219 |
-
elif "landmark" in question.lower() or "monument" in question.lower():
|
| 220 |
-
location_details.append(f"showing {answer}")
|
| 221 |
-
elif "building" in question.lower():
|
| 222 |
-
location_details.append(f"featuring {answer}")
|
| 223 |
-
elif "state" in question.lower() or "province" in question.lower():
|
| 224 |
-
location_details.append(f"in {answer}")
|
| 225 |
-
elif "region" in question.lower():
|
| 226 |
-
location_details.append(f"in the {answer} region")
|
| 227 |
-
|
| 228 |
-
if location_details:
|
| 229 |
-
enhanced_parts.append(" ".join(location_details[:3])) # Limit to avoid too long captions
|
| 230 |
-
|
| 231 |
-
if architectural_info:
|
| 232 |
-
arch_details = []
|
| 233 |
-
for question, answer in architectural_info.items():
|
| 234 |
-
if "architecture" in question.lower() or "style" in question.lower():
|
| 235 |
-
arch_details.append(f"The architecture appears to be {answer}")
|
| 236 |
-
elif "period" in question.lower():
|
| 237 |
-
arch_details.append(f"from the {answer} period")
|
| 238 |
-
|
| 239 |
-
if arch_details:
|
| 240 |
-
enhanced_parts.append(" ".join(arch_details[:2]))
|
| 241 |
-
|
| 242 |
-
if object_info:
|
| 243 |
-
obj_details = []
|
| 244 |
-
for question, answer in object_info.items():
|
| 245 |
-
if "time of day" in question.lower():
|
| 246 |
-
obj_details.append(f"taken during {answer}")
|
| 247 |
-
elif "weather" in question.lower():
|
| 248 |
-
obj_details.append(f"in {answer} weather")
|
| 249 |
-
elif "season" in question.lower():
|
| 250 |
-
obj_details.append(f"during {answer}")
|
| 251 |
-
|
| 252 |
-
if obj_details:
|
| 253 |
-
enhanced_parts.append(" ".join(obj_details[:2]))
|
| 254 |
-
|
| 255 |
-
return ". ".join(enhanced_parts) + "."
|
| 256 |
-
|
| 257 |
def main():
|
| 258 |
# Header
|
| 259 |
st.markdown("""
|
| 260 |
<div class="main-header">
|
| 261 |
-
<h1>๐
|
| 262 |
-
<p>Upload an image and get
|
| 263 |
</div>
|
| 264 |
""", unsafe_allow_html=True)
|
| 265 |
|
|
@@ -267,34 +106,23 @@ def main():
|
|
| 267 |
with st.sidebar:
|
| 268 |
st.header("๐ง Settings")
|
| 269 |
st.markdown("### Model Information")
|
| 270 |
-
st.info("Using **BLIP-2**
|
| 271 |
|
| 272 |
-
#
|
| 273 |
-
st.
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
include_architecture = st.checkbox("๐๏ธ Architecture Analysis", value=True)
|
| 277 |
-
|
| 278 |
-
# Custom questions
|
| 279 |
-
st.markdown("### Custom Questions")
|
| 280 |
-
custom_question = st.text_input(
|
| 281 |
-
"Ask about the image:",
|
| 282 |
-
placeholder="e.g., What time of day is this?"
|
| 283 |
)
|
| 284 |
|
| 285 |
st.markdown("### About")
|
| 286 |
st.markdown("""
|
| 287 |
-
This
|
| 288 |
|
| 289 |
**Features:**
|
| 290 |
-
- ๐ผ๏ธ
|
| 291 |
-
-
|
| 292 |
-
-
|
| 293 |
-
- ๐ฏ
|
| 294 |
-
- ๐๏ธ Architecture analysis
|
| 295 |
-
- โ Custom Q&A
|
| 296 |
-
- ๐ State/Province detection
|
| 297 |
-
- ๐ Neighborhood analysis
|
| 298 |
""")
|
| 299 |
|
| 300 |
# Main content
|
|
@@ -307,13 +135,13 @@ def main():
|
|
| 307 |
uploaded_file = st.file_uploader(
|
| 308 |
"Choose an image file",
|
| 309 |
type=["jpg", "jpeg", "png", "bmp", "tiff"],
|
| 310 |
-
help="Upload an image
|
| 311 |
)
|
| 312 |
|
| 313 |
if uploaded_file is not None:
|
| 314 |
# Display uploaded image
|
| 315 |
image = Image.open(uploaded_file)
|
| 316 |
-
st.image(image, caption="Uploaded Image",
|
| 317 |
|
| 318 |
# Image info
|
| 319 |
st.markdown(f"""
|
|
@@ -324,131 +152,46 @@ def main():
|
|
| 324 |
""")
|
| 325 |
|
| 326 |
with col2:
|
| 327 |
-
st.markdown("### ๐ฎ
|
| 328 |
|
| 329 |
if uploaded_file is not None:
|
| 330 |
-
# Load
|
| 331 |
-
with st.spinner("Loading
|
| 332 |
-
|
| 333 |
|
| 334 |
-
if
|
| 335 |
-
#
|
| 336 |
-
if st.button("
|
| 337 |
-
with st.spinner("
|
| 338 |
start_time = time.time()
|
| 339 |
|
| 340 |
-
# Generate
|
| 341 |
-
|
| 342 |
-
image,
|
| 343 |
-
)
|
| 344 |
-
|
| 345 |
-
# Analyze for locations and objects
|
| 346 |
-
location_info, object_info, architectural_info = analyze_location_and_objects(
|
| 347 |
-
image, blip_processor, blip_model, device
|
| 348 |
)
|
| 349 |
|
| 350 |
-
# Custom question
|
| 351 |
-
custom_answer = None
|
| 352 |
-
if custom_question:
|
| 353 |
-
custom_answer = ask_visual_question(
|
| 354 |
-
image, custom_question, blip_processor, blip_model, device
|
| 355 |
-
)
|
| 356 |
-
|
| 357 |
end_time = time.time()
|
| 358 |
|
| 359 |
-
if
|
| 360 |
-
#
|
| 361 |
st.markdown(f"""
|
| 362 |
<div class="caption-box">
|
| 363 |
-
<h4>๐
|
| 364 |
-
<p style="font-size: 16px; font-weight: 500;">{
|
| 365 |
-
</div>
|
| 366 |
-
""", unsafe_allow_html=True)
|
| 367 |
-
|
| 368 |
-
# Location Analysis
|
| 369 |
-
if include_location and location_info:
|
| 370 |
-
st.markdown("""
|
| 371 |
-
<div class="location-box">
|
| 372 |
-
<h4>๐ Location Analysis:</h4>
|
| 373 |
-
</div>
|
| 374 |
-
""", unsafe_allow_html=True)
|
| 375 |
-
|
| 376 |
-
for question, answer in location_info.items():
|
| 377 |
-
st.write(f"**{question}** {answer}")
|
| 378 |
-
|
| 379 |
-
# Object Analysis
|
| 380 |
-
if include_objects and object_info:
|
| 381 |
-
st.markdown("""
|
| 382 |
-
<div class="objects-box">
|
| 383 |
-
<h4>๐ฏ Object Analysis:</h4>
|
| 384 |
-
</div>
|
| 385 |
-
""", unsafe_allow_html=True)
|
| 386 |
-
|
| 387 |
-
for question, answer in object_info.items():
|
| 388 |
-
st.write(f"**{question}** {answer}")
|
| 389 |
-
|
| 390 |
-
# Architecture Analysis
|
| 391 |
-
if include_architecture and architectural_info:
|
| 392 |
-
st.markdown("""
|
| 393 |
-
<div class="analysis-box">
|
| 394 |
-
<h4>๐๏ธ Architecture Analysis:</h4>
|
| 395 |
-
</div>
|
| 396 |
-
""", unsafe_allow_html=True)
|
| 397 |
-
|
| 398 |
-
for question, answer in architectural_info.items():
|
| 399 |
-
st.write(f"**{question}** {answer}")
|
| 400 |
-
|
| 401 |
-
# Custom Question Answer
|
| 402 |
-
if custom_answer:
|
| 403 |
-
st.markdown(f"""
|
| 404 |
-
<div class="analysis-box">
|
| 405 |
-
<h4>โ Custom Question:</h4>
|
| 406 |
-
<p><strong>Q:</strong> {custom_question}</p>
|
| 407 |
-
<p><strong>A:</strong> {custom_answer}</p>
|
| 408 |
-
</div>
|
| 409 |
-
""", unsafe_allow_html=True)
|
| 410 |
-
|
| 411 |
-
# Enhanced Caption
|
| 412 |
-
enhanced_caption = generate_enhanced_caption(
|
| 413 |
-
basic_caption, location_info, object_info, architectural_info
|
| 414 |
-
)
|
| 415 |
-
|
| 416 |
-
st.markdown(f"""
|
| 417 |
-
<div class="caption-box" style="border-left-color: #28a745;">
|
| 418 |
-
<h4>โจ Enhanced Caption:</h4>
|
| 419 |
-
<p style="font-size: 16px; font-weight: 500;">{enhanced_caption}</p>
|
| 420 |
</div>
|
| 421 |
""", unsafe_allow_html=True)
|
| 422 |
|
| 423 |
# Performance info
|
| 424 |
-
st.success(f"
|
| 425 |
-
|
| 426 |
-
# Copy caption to clipboard
|
| 427 |
-
st.code(enhanced_caption, language=None)
|
| 428 |
-
|
| 429 |
-
# Export options
|
| 430 |
-
analysis_data = {
|
| 431 |
-
"basic_caption": basic_caption,
|
| 432 |
-
"enhanced_caption": enhanced_caption,
|
| 433 |
-
"location_info": location_info if include_location else {},
|
| 434 |
-
"object_info": object_info if include_objects else {},
|
| 435 |
-
"architectural_info": architectural_info if include_architecture else {},
|
| 436 |
-
"custom_qa": {"question": custom_question, "answer": custom_answer} if custom_answer else None
|
| 437 |
-
}
|
| 438 |
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
data=json.dumps(analysis_data, indent=2),
|
| 442 |
-
file_name=f"image_analysis_{int(time.time())}.json",
|
| 443 |
-
mime="application/json"
|
| 444 |
-
)
|
| 445 |
else:
|
| 446 |
-
st.error("Failed to load the
|
| 447 |
else:
|
| 448 |
st.markdown("""
|
| 449 |
<div class="upload-section">
|
| 450 |
<h3>๐ Upload an image to get started</h3>
|
| 451 |
-
<p>Get comprehensive AI analysis including locations, landmarks, and objects!</p>
|
| 452 |
<p>Supported formats: JPG, PNG, BMP, TIFF</p>
|
| 453 |
</div>
|
| 454 |
""", unsafe_allow_html=True)
|
|
@@ -457,8 +200,8 @@ def main():
|
|
| 457 |
st.markdown("---")
|
| 458 |
st.markdown("""
|
| 459 |
<div style="text-align: center; color: #666;">
|
| 460 |
-
<p>Built with
|
| 461 |
-
<p>Powered by <strong>BLIP-2</strong>
|
| 462 |
</div>
|
| 463 |
""", unsafe_allow_html=True)
|
| 464 |
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
| 5 |
import io
|
| 6 |
import time
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Set page config
|
| 9 |
st.set_page_config(
|
| 10 |
+
page_title="๐ BLIP-2 Caption Generator",
|
| 11 |
page_icon="๐",
|
| 12 |
layout="wide",
|
| 13 |
initial_sidebar_state="expanded"
|
|
|
|
| 38 |
border-radius: 5px;
|
| 39 |
margin: 1rem 0;
|
| 40 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
</style>
|
| 42 |
""", unsafe_allow_html=True)
|
| 43 |
|
| 44 |
@st.cache_resource
|
| 45 |
+
def load_model():
|
| 46 |
+
"""Load and cache the BLIP-2 model and processor"""
|
| 47 |
try:
|
| 48 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 49 |
|
| 50 |
+
# Use the smaller BLIP-2 model for better performance on Hugging Face Spaces
|
| 51 |
+
model_name = "Salesforce/blip2-opt-2.7b"
|
| 52 |
+
|
| 53 |
+
processor = Blip2Processor.from_pretrained(model_name)
|
| 54 |
+
model = Blip2ForConditionalGeneration.from_pretrained(
|
| 55 |
+
model_name,
|
| 56 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 57 |
device_map="auto" if device == "cuda" else None
|
| 58 |
)
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
if device == "cpu":
|
| 61 |
+
model = model.to(device)
|
|
|
|
| 62 |
|
| 63 |
+
return processor, model, device
|
| 64 |
except Exception as e:
|
| 65 |
+
st.error(f"Error loading model: {str(e)}")
|
| 66 |
+
return None, None, None
|
| 67 |
|
| 68 |
+
def generate_caption(image, processor, model, device, prompt=""):
|
| 69 |
+
"""Generate caption for the uploaded image"""
|
| 70 |
try:
|
| 71 |
+
# Prepare inputs
|
| 72 |
if prompt:
|
| 73 |
inputs = processor(image, text=prompt, return_tensors="pt").to(device)
|
| 74 |
else:
|
| 75 |
inputs = processor(image, return_tensors="pt").to(device)
|
| 76 |
|
| 77 |
+
# Generate caption
|
| 78 |
with torch.no_grad():
|
| 79 |
generated_ids = model.generate(
|
| 80 |
**inputs,
|
| 81 |
+
max_length=50,
|
| 82 |
num_beams=5,
|
| 83 |
temperature=0.7,
|
| 84 |
do_sample=True,
|
| 85 |
early_stopping=True
|
| 86 |
)
|
| 87 |
|
| 88 |
+
# Decode the generated caption
|
| 89 |
caption = processor.decode(generated_ids[0], skip_special_tokens=True)
|
| 90 |
return caption
|
| 91 |
+
|
| 92 |
except Exception as e:
|
| 93 |
st.error(f"Error generating caption: {str(e)}")
|
| 94 |
return None
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
def main():
|
| 97 |
# Header
|
| 98 |
st.markdown("""
|
| 99 |
<div class="main-header">
|
| 100 |
+
<h1>๐ BLIP-2 Caption Generator</h1>
|
| 101 |
+
<p>Upload an image and get AI-generated captions instantly!</p>
|
| 102 |
</div>
|
| 103 |
""", unsafe_allow_html=True)
|
| 104 |
|
|
|
|
| 106 |
with st.sidebar:
|
| 107 |
st.header("๐ง Settings")
|
| 108 |
st.markdown("### Model Information")
|
| 109 |
+
st.info("Using **BLIP-2** (Salesforce/blip2-opt-2.7b)")
|
| 110 |
|
| 111 |
+
# Custom prompt option
|
| 112 |
+
custom_prompt = st.text_input(
|
| 113 |
+
"Custom Prompt (Optional):",
|
| 114 |
+
placeholder="e.g., 'Question: What is in this image? Answer:'"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
)
|
| 116 |
|
| 117 |
st.markdown("### About")
|
| 118 |
st.markdown("""
|
| 119 |
+
This app uses the **BLIP-2** model to generate natural language descriptions of images.
|
| 120 |
|
| 121 |
**Features:**
|
| 122 |
+
- ๐ผ๏ธ Upload any image format
|
| 123 |
+
- ๐ค AI-powered captioning
|
| 124 |
+
- โก Fast inference
|
| 125 |
+
- ๐ฏ Optional custom prompts
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
""")
|
| 127 |
|
| 128 |
# Main content
|
|
|
|
| 135 |
uploaded_file = st.file_uploader(
|
| 136 |
"Choose an image file",
|
| 137 |
type=["jpg", "jpeg", "png", "bmp", "tiff"],
|
| 138 |
+
help="Upload an image to generate a caption"
|
| 139 |
)
|
| 140 |
|
| 141 |
if uploaded_file is not None:
|
| 142 |
# Display uploaded image
|
| 143 |
image = Image.open(uploaded_file)
|
| 144 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 145 |
|
| 146 |
# Image info
|
| 147 |
st.markdown(f"""
|
|
|
|
| 152 |
""")
|
| 153 |
|
| 154 |
with col2:
|
| 155 |
+
st.markdown("### ๐ฎ Generated Caption")
|
| 156 |
|
| 157 |
if uploaded_file is not None:
|
| 158 |
+
# Load model
|
| 159 |
+
with st.spinner("Loading BLIP-2 model..."):
|
| 160 |
+
processor, model, device = load_model()
|
| 161 |
|
| 162 |
+
if processor is not None and model is not None:
|
| 163 |
+
# Generate caption button
|
| 164 |
+
if st.button("๐ฏ Generate Caption", type="primary"):
|
| 165 |
+
with st.spinner("Generating caption..."):
|
| 166 |
start_time = time.time()
|
| 167 |
|
| 168 |
+
# Generate caption
|
| 169 |
+
caption = generate_caption(
|
| 170 |
+
image, processor, model, device, custom_prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
)
|
| 172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
end_time = time.time()
|
| 174 |
|
| 175 |
+
if caption:
|
| 176 |
+
# Display caption
|
| 177 |
st.markdown(f"""
|
| 178 |
<div class="caption-box">
|
| 179 |
+
<h4>๐ Caption:</h4>
|
| 180 |
+
<p style="font-size: 16px; font-weight: 500;">{caption}</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
</div>
|
| 182 |
""", unsafe_allow_html=True)
|
| 183 |
|
| 184 |
# Performance info
|
| 185 |
+
st.success(f"Caption generated in {end_time - start_time:.2f} seconds")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
+
# Copy to clipboard button
|
| 188 |
+
st.code(caption, language=None)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
else:
|
| 190 |
+
st.error("Failed to load the model. Please try refreshing the page.")
|
| 191 |
else:
|
| 192 |
st.markdown("""
|
| 193 |
<div class="upload-section">
|
| 194 |
<h3>๐ Upload an image to get started</h3>
|
|
|
|
| 195 |
<p>Supported formats: JPG, PNG, BMP, TIFF</p>
|
| 196 |
</div>
|
| 197 |
""", unsafe_allow_html=True)
|
|
|
|
| 200 |
st.markdown("---")
|
| 201 |
st.markdown("""
|
| 202 |
<div style="text-align: center; color: #666;">
|
| 203 |
+
<p>Built with <strong>Streamlit</strong> and <strong>Hugging Face Transformers</strong></p>
|
| 204 |
+
<p>Powered by <strong>BLIP-2</strong> - Bootstrapping Language-Image Pre-training</p>
|
| 205 |
</div>
|
| 206 |
""", unsafe_allow_html=True)
|
| 207 |
|