Spaces:
Sleeping
Sleeping
Commit
·
ffccd2d
1
Parent(s):
9a609ed
Initial deployment with Git LFS
Browse files- .gitattributes +1 -0
- README.md +111 -6
- app.py +455 -0
- models/discriminator.h5 +3 -0
- models/discriminator_savedmodel/fingerprint.pb +3 -0
- models/discriminator_savedmodel/keras_metadata.pb +3 -0
- models/discriminator_savedmodel/saved_model.pb +3 -0
- models/discriminator_savedmodel/variables/variables.data-00000-of-00001 +3 -0
- models/discriminator_savedmodel/variables/variables.index +0 -0
- models/generated_images.npy +3 -0
- models/generator.h5 +3 -0
- models/generator_savedmodel/fingerprint.pb +3 -0
- models/generator_savedmodel/keras_metadata.pb +3 -0
- models/generator_savedmodel/saved_model.pb +3 -0
- models/generator_savedmodel/variables/variables.data-00000-of-00001 +3 -0
- models/generator_savedmodel/variables/variables.index +0 -0
- models/image_at_epoch_0005.png +0 -0
- models/image_at_epoch_0010.png +0 -0
- models/image_at_epoch_0015.png +0 -0
- models/image_at_epoch_0020.png +0 -0
- models/image_at_epoch_0025.png +0 -0
- models/image_at_epoch_0030.png +0 -0
- models/image_at_epoch_0035.png +0 -0
- models/image_at_epoch_0040.png +0 -0
- models/image_at_epoch_0045.png +0 -0
- models/image_at_epoch_0050.png +0 -0
- models/latent_vectors.npy +3 -0
- requirements.txt +8 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,12 +1,117 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: GAN Interactive Demo - MNIST
|
| 3 |
+
emoji: 🎨
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.44.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# 🎨 GAN Interactive Demo - Exploración del Espacio Latente
|
| 14 |
+
|
| 15 |
+
Una aplicación interactiva para explorar cómo funcionan las **Redes Generativas Adversarias (GANs)** entrenadas en el dataset MNIST de dígitos manuscritos.
|
| 16 |
+
|
| 17 |
+
## 🌟 Características
|
| 18 |
+
|
| 19 |
+
### 1. Generación Aleatoria
|
| 20 |
+
Genera dígitos manuscritos desde vectores de ruido aleatorio con un solo clic.
|
| 21 |
+
|
| 22 |
+
### 2. Control Manual
|
| 23 |
+
Ajusta las primeras 10 dimensiones del vector latente (de 100 dimensiones totales) usando sliders interactivos para ver cómo cada dimensión afecta la generación.
|
| 24 |
+
|
| 25 |
+
### 3. Interpolación
|
| 26 |
+
Observa el **morphing suave** entre dos dígitos diferentes. Esto demuestra que el espacio latente aprendido por la GAN es continuo y significativo.
|
| 27 |
+
|
| 28 |
+
### 4. Visualización del Espacio Latente
|
| 29 |
+
Inspirado en el **TensorFlow Projector**, esta sección te permite:
|
| 30 |
+
- Visualizar el espacio latente de 100 dimensiones reducido a 3D usando **PCA**
|
| 31 |
+
- Explorar agrupaciones usando **t-SNE** en 2D
|
| 32 |
+
- Generar dígitos desde puntos específicos del espacio
|
| 33 |
+
|
| 34 |
+
### 5. Grid de Comparación
|
| 35 |
+
Genera múltiples dígitos simultáneamente para observar la diversidad y calidad de las generaciones.
|
| 36 |
+
|
| 37 |
+
## 🏗️ Arquitectura
|
| 38 |
+
|
| 39 |
+
### Generador
|
| 40 |
+
```
|
| 41 |
+
Input: Vector latente (100D) ~ N(0,1)
|
| 42 |
+
↓
|
| 43 |
+
Dense (7×7×256) + BatchNorm + LeakyReLU
|
| 44 |
+
↓
|
| 45 |
+
Reshape (7, 7, 256)
|
| 46 |
+
↓
|
| 47 |
+
Conv2DTranspose (7×7×128) + BatchNorm + LeakyReLU
|
| 48 |
+
↓
|
| 49 |
+
Conv2DTranspose (14×14×64) + BatchNorm + LeakyReLU
|
| 50 |
+
↓
|
| 51 |
+
Conv2DTranspose (28×28×1) + Tanh
|
| 52 |
+
↓
|
| 53 |
+
Output: Imagen (28×28×1) en rango [-1, 1]
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
### Discriminador
|
| 57 |
+
```
|
| 58 |
+
Input: Imagen (28×28×1)
|
| 59 |
+
↓
|
| 60 |
+
Conv2D (14×14×64) + LeakyReLU + Dropout(0.3)
|
| 61 |
+
↓
|
| 62 |
+
Conv2D (7×7×128) + LeakyReLU + Dropout(0.3)
|
| 63 |
+
↓
|
| 64 |
+
Flatten + Dense(1)
|
| 65 |
+
↓
|
| 66 |
+
Output: Logit (clasificación binaria: real/falso)
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
## 📊 Entrenamiento
|
| 70 |
+
|
| 71 |
+
- **Dataset**: MNIST (60,000 imágenes de entrenamiento)
|
| 72 |
+
- **Épocas**: 50
|
| 73 |
+
- **Batch Size**: 256
|
| 74 |
+
- **Optimizer**: Adam (learning rate = 1e-4)
|
| 75 |
+
- **Loss**: Binary Cross-Entropy
|
| 76 |
+
- **Tiempo de entrenamiento**: ~20 minutos en CPU
|
| 77 |
+
|
| 78 |
+
## 🎓 Propósito Educativo
|
| 79 |
+
|
| 80 |
+
Esta demo fue creada para una clase de Machine Learning para:
|
| 81 |
+
1. Demostrar visualmente cómo las GANs aprenden distribuciones de datos
|
| 82 |
+
2. Mostrar que el espacio latente es continuo y navegable
|
| 83 |
+
3. Permitir experimentación interactiva con los conceptos
|
| 84 |
+
4. Inspirar a los estudiantes para su proyecto final de GANs
|
| 85 |
+
|
| 86 |
+
## 🚀 Uso Local
|
| 87 |
+
|
| 88 |
+
```bash
|
| 89 |
+
# Clonar el repositorio
|
| 90 |
+
git clone https://huggingface.co/spaces/[username]/gan-interactive-demo
|
| 91 |
+
cd gan-interactive-demo
|
| 92 |
+
|
| 93 |
+
# Instalar dependencias
|
| 94 |
+
pip install -r requirements.txt
|
| 95 |
+
|
| 96 |
+
# Ejecutar la aplicación
|
| 97 |
+
python app.py
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
## 📚 Referencias
|
| 101 |
+
|
| 102 |
+
- **Paper Original de GANs**: [Generative Adversarial Networks](https://arxiv.org/abs/1406.2661) (Goodfellow et al., 2014)
|
| 103 |
+
- **DCGAN**: [Unsupervised Representation Learning with Deep Convolutional GANs](https://arxiv.org/abs/1511.06434) (Radford et al., 2015)
|
| 104 |
+
- **GAN Lab**: [Understanding Complex Deep Generative Models](https://poloclub.github.io/ganlab/)
|
| 105 |
+
|
| 106 |
+
## 📝 Licencia
|
| 107 |
+
|
| 108 |
+
MIT License - Siéntete libre de usar este código para propósitos educativos.
|
| 109 |
+
|
| 110 |
+
## 🤝 Contribuciones
|
| 111 |
+
|
| 112 |
+
¡Contribuciones, issues y sugerencias son bienvenidas!
|
| 113 |
+
|
| 114 |
+
---
|
| 115 |
+
|
| 116 |
+
**Creado con ❤️ para la clase de Machine Learning**
|
| 117 |
+
|
app.py
ADDED
|
@@ -0,0 +1,455 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
GAN Interactive Demo - Aplicación Gradio
|
| 3 |
+
Visualización interactiva del espacio latente y generación de dígitos MNIST
|
| 4 |
+
"""
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import tensorflow as tf
|
| 7 |
+
from tensorflow import keras
|
| 8 |
+
import numpy as np
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
from sklearn.decomposition import PCA
|
| 11 |
+
from sklearn.manifold import TSNE
|
| 12 |
+
import plotly.graph_objects as go
|
| 13 |
+
import plotly.express as px
|
| 14 |
+
from PIL import Image
|
| 15 |
+
import io
|
| 16 |
+
import os
|
| 17 |
+
|
| 18 |
+
# Configuración
|
| 19 |
+
LATENT_DIM = 100
|
| 20 |
+
MODEL_DIR = "models"
|
| 21 |
+
|
| 22 |
+
# Cargar el generador
|
| 23 |
+
print("Cargando modelo generador...")
|
| 24 |
+
try:
|
| 25 |
+
generator = keras.models.load_model(f'{MODEL_DIR}/generator.h5', compile=False)
|
| 26 |
+
print("✓ Generador cargado exitosamente")
|
| 27 |
+
except Exception as e:
|
| 28 |
+
print(f"Error cargando generador: {e}")
|
| 29 |
+
generator = None
|
| 30 |
+
|
| 31 |
+
# Cargar vectores latentes pre-generados para exploración
|
| 32 |
+
try:
|
| 33 |
+
latent_vectors = np.load(f'{MODEL_DIR}/latent_vectors.npy')
|
| 34 |
+
generated_images_cache = np.load(f'{MODEL_DIR}/generated_images.npy')
|
| 35 |
+
print(f"✓ Vectores latentes cargados: {latent_vectors.shape}")
|
| 36 |
+
except Exception as e:
|
| 37 |
+
print(f"Generando nuevos vectores latentes...")
|
| 38 |
+
latent_vectors = np.random.normal(0, 1, (1000, LATENT_DIM))
|
| 39 |
+
if generator:
|
| 40 |
+
generated_images_cache = generator(latent_vectors, training=False).numpy()
|
| 41 |
+
else:
|
| 42 |
+
generated_images_cache = None
|
| 43 |
+
|
| 44 |
+
# Calcular reducción dimensional para visualización
|
| 45 |
+
print("Calculando reducción dimensional...")
|
| 46 |
+
pca = PCA(n_components=3)
|
| 47 |
+
latent_pca = pca.fit_transform(latent_vectors)
|
| 48 |
+
|
| 49 |
+
tsne = TSNE(n_components=2, random_state=42, perplexity=30)
|
| 50 |
+
latent_tsne = tsne.fit_transform(latent_vectors[:500]) # Usar subset para velocidad
|
| 51 |
+
|
| 52 |
+
print("✓ Aplicación lista")
|
| 53 |
+
|
| 54 |
+
# ==================== FUNCIONES DE GENERACIÓN ====================
|
| 55 |
+
|
| 56 |
+
def generate_random_digit():
|
| 57 |
+
"""Genera un dígito aleatorio desde un vector latente random"""
|
| 58 |
+
if generator is None:
|
| 59 |
+
return None, "Modelo no disponible"
|
| 60 |
+
|
| 61 |
+
# Generar vector latente aleatorio
|
| 62 |
+
latent_vector = np.random.normal(0, 1, (1, LATENT_DIM))
|
| 63 |
+
|
| 64 |
+
# Generar imagen
|
| 65 |
+
generated_image = generator(latent_vector, training=False)
|
| 66 |
+
image = generated_image[0, :, :, 0].numpy()
|
| 67 |
+
|
| 68 |
+
# Desnormalizar
|
| 69 |
+
image = (image * 127.5 + 127.5).astype(np.uint8)
|
| 70 |
+
|
| 71 |
+
# Convertir a PIL Image para Gradio
|
| 72 |
+
pil_image = Image.fromarray(image, mode='L')
|
| 73 |
+
|
| 74 |
+
return pil_image, f"Vector latente: {latent_vector[0, :5]}... (primeros 5 valores)"
|
| 75 |
+
|
| 76 |
+
def generate_from_sliders(*slider_values):
|
| 77 |
+
"""Genera un dígito desde valores de sliders (primeras 10 dimensiones)"""
|
| 78 |
+
if generator is None:
|
| 79 |
+
return None, "Modelo no disponible"
|
| 80 |
+
|
| 81 |
+
# Crear vector latente: primeras 10 dimensiones desde sliders, resto aleatorio
|
| 82 |
+
latent_vector = np.random.normal(0, 1, (1, LATENT_DIM))
|
| 83 |
+
latent_vector[0, :10] = slider_values
|
| 84 |
+
|
| 85 |
+
# Generar imagen
|
| 86 |
+
generated_image = generator(latent_vector, training=False)
|
| 87 |
+
image = generated_image[0, :, :, 0].numpy()
|
| 88 |
+
|
| 89 |
+
# Desnormalizar
|
| 90 |
+
image = (image * 127.5 + 127.5).astype(np.uint8)
|
| 91 |
+
|
| 92 |
+
# Convertir a PIL Image para Gradio
|
| 93 |
+
pil_image = Image.fromarray(image, mode='L')
|
| 94 |
+
|
| 95 |
+
return pil_image
|
| 96 |
+
|
| 97 |
+
def interpolate_digits(start_seed, end_seed, steps):
|
| 98 |
+
"""Interpola entre dos dígitos generados desde semillas"""
|
| 99 |
+
if generator is None:
|
| 100 |
+
return None
|
| 101 |
+
|
| 102 |
+
# Generar vectores latentes desde semillas
|
| 103 |
+
np.random.seed(int(start_seed))
|
| 104 |
+
latent_start = np.random.normal(0, 1, (1, LATENT_DIM))
|
| 105 |
+
|
| 106 |
+
np.random.seed(int(end_seed))
|
| 107 |
+
latent_end = np.random.normal(0, 1, (1, LATENT_DIM))
|
| 108 |
+
|
| 109 |
+
# Crear interpolación lineal
|
| 110 |
+
alphas = np.linspace(0, 1, int(steps))
|
| 111 |
+
|
| 112 |
+
# Generar imágenes interpoladas
|
| 113 |
+
images = []
|
| 114 |
+
for alpha in alphas:
|
| 115 |
+
latent_interp = (1 - alpha) * latent_start + alpha * latent_end
|
| 116 |
+
generated = generator(latent_interp, training=False)
|
| 117 |
+
image = generated[0, :, :, 0].numpy()
|
| 118 |
+
image = (image * 127.5 + 127.5).astype(np.uint8)
|
| 119 |
+
images.append(image)
|
| 120 |
+
|
| 121 |
+
# Crear grid de imágenes
|
| 122 |
+
n_images = len(images)
|
| 123 |
+
cols = min(10, n_images)
|
| 124 |
+
rows = (n_images + cols - 1) // cols
|
| 125 |
+
|
| 126 |
+
fig, axes = plt.subplots(rows, cols, figsize=(cols * 1.5, rows * 1.5))
|
| 127 |
+
if rows == 1:
|
| 128 |
+
axes = axes.reshape(1, -1)
|
| 129 |
+
|
| 130 |
+
for idx, image in enumerate(images):
|
| 131 |
+
row = idx // cols
|
| 132 |
+
col = idx % cols
|
| 133 |
+
axes[row, col].imshow(image, cmap='gray')
|
| 134 |
+
axes[row, col].axis('off')
|
| 135 |
+
axes[row, col].set_title(f'{idx+1}', fontsize=8)
|
| 136 |
+
|
| 137 |
+
# Ocultar ejes vacíos
|
| 138 |
+
for idx in range(n_images, rows * cols):
|
| 139 |
+
row = idx // cols
|
| 140 |
+
col = idx % cols
|
| 141 |
+
axes[row, col].axis('off')
|
| 142 |
+
|
| 143 |
+
plt.tight_layout()
|
| 144 |
+
|
| 145 |
+
# Convertir a imagen
|
| 146 |
+
buf = io.BytesIO()
|
| 147 |
+
plt.savefig(buf, format='png', dpi=100, bbox_inches='tight')
|
| 148 |
+
buf.seek(0)
|
| 149 |
+
plt.close()
|
| 150 |
+
|
| 151 |
+
return Image.open(buf)
|
| 152 |
+
|
| 153 |
+
def visualize_latent_space_pca():
|
| 154 |
+
"""Visualiza el espacio latente en 3D usando PCA"""
|
| 155 |
+
fig = go.Figure(data=[go.Scatter3d(
|
| 156 |
+
x=latent_pca[:, 0],
|
| 157 |
+
y=latent_pca[:, 1],
|
| 158 |
+
z=latent_pca[:, 2],
|
| 159 |
+
mode='markers',
|
| 160 |
+
marker=dict(
|
| 161 |
+
size=3,
|
| 162 |
+
color=latent_pca[:, 2],
|
| 163 |
+
colorscale='Viridis',
|
| 164 |
+
showscale=True,
|
| 165 |
+
colorbar=dict(title="PC3"),
|
| 166 |
+
opacity=0.7
|
| 167 |
+
),
|
| 168 |
+
text=[f'Punto {i}' for i in range(len(latent_pca))],
|
| 169 |
+
hovertemplate='<b>Punto %{text}</b><br>PC1: %{x:.2f}<br>PC2: %{y:.2f}<br>PC3: %{z:.2f}<extra></extra>'
|
| 170 |
+
)])
|
| 171 |
+
|
| 172 |
+
fig.update_layout(
|
| 173 |
+
title='Espacio Latente - Visualización PCA 3D',
|
| 174 |
+
scene=dict(
|
| 175 |
+
xaxis_title='Componente Principal 1',
|
| 176 |
+
yaxis_title='Componente Principal 2',
|
| 177 |
+
zaxis_title='Componente Principal 3',
|
| 178 |
+
bgcolor='rgba(240, 240, 240, 0.9)'
|
| 179 |
+
),
|
| 180 |
+
width=800,
|
| 181 |
+
height=600,
|
| 182 |
+
showlegend=False
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
return fig
|
| 186 |
+
|
| 187 |
+
def visualize_latent_space_tsne():
|
| 188 |
+
"""Visualiza el espacio latente en 2D usando t-SNE"""
|
| 189 |
+
fig = go.Figure(data=[go.Scatter(
|
| 190 |
+
x=latent_tsne[:, 0],
|
| 191 |
+
y=latent_tsne[:, 1],
|
| 192 |
+
mode='markers',
|
| 193 |
+
marker=dict(
|
| 194 |
+
size=6,
|
| 195 |
+
color=np.arange(len(latent_tsne)),
|
| 196 |
+
colorscale='Plasma',
|
| 197 |
+
showscale=True,
|
| 198 |
+
colorbar=dict(title="Índice"),
|
| 199 |
+
opacity=0.7
|
| 200 |
+
),
|
| 201 |
+
text=[f'Punto {i}' for i in range(len(latent_tsne))],
|
| 202 |
+
hovertemplate='<b>Punto %{text}</b><br>t-SNE 1: %{x:.2f}<br>t-SNE 2: %{y:.2f}<extra></extra>'
|
| 203 |
+
)])
|
| 204 |
+
|
| 205 |
+
fig.update_layout(
|
| 206 |
+
title='Espacio Latente - Visualización t-SNE 2D',
|
| 207 |
+
xaxis_title='Dimensión t-SNE 1',
|
| 208 |
+
yaxis_title='Dimensión t-SNE 2',
|
| 209 |
+
width=800,
|
| 210 |
+
height=600,
|
| 211 |
+
plot_bgcolor='rgba(240, 240, 240, 0.9)'
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
return fig
|
| 215 |
+
|
| 216 |
+
def generate_from_latent_index(index):
|
| 217 |
+
"""Genera imagen desde un índice del espacio latente pre-calculado"""
|
| 218 |
+
if generated_images_cache is None:
|
| 219 |
+
return None, "Cache no disponible"
|
| 220 |
+
|
| 221 |
+
index = int(index) % len(generated_images_cache)
|
| 222 |
+
image = generated_images_cache[index, :, :, 0]
|
| 223 |
+
image = (image * 127.5 + 127.5).astype(np.uint8)
|
| 224 |
+
|
| 225 |
+
# Convertir a PIL Image para Gradio
|
| 226 |
+
pil_image = Image.fromarray(image, mode='L')
|
| 227 |
+
|
| 228 |
+
return pil_image, f"Índice: {index}\nVector latente: {latent_vectors[index, :5]}..."
|
| 229 |
+
|
| 230 |
+
def generate_grid_comparison():
|
| 231 |
+
"""Genera un grid de comparación de múltiples dígitos"""
|
| 232 |
+
if generator is None:
|
| 233 |
+
return None
|
| 234 |
+
|
| 235 |
+
# Generar 16 dígitos aleatorios
|
| 236 |
+
latent_vectors_batch = np.random.normal(0, 1, (16, LATENT_DIM))
|
| 237 |
+
generated_images = generator(latent_vectors_batch, training=False)
|
| 238 |
+
|
| 239 |
+
# Crear grid
|
| 240 |
+
fig, axes = plt.subplots(4, 4, figsize=(10, 10))
|
| 241 |
+
|
| 242 |
+
for i in range(4):
|
| 243 |
+
for j in range(4):
|
| 244 |
+
idx = i * 4 + j
|
| 245 |
+
image = generated_images[idx, :, :, 0].numpy()
|
| 246 |
+
image = (image * 127.5 + 127.5).astype(np.uint8)
|
| 247 |
+
|
| 248 |
+
axes[i, j].imshow(image, cmap='gray')
|
| 249 |
+
axes[i, j].axis('off')
|
| 250 |
+
|
| 251 |
+
plt.tight_layout()
|
| 252 |
+
|
| 253 |
+
# Convertir a imagen
|
| 254 |
+
buf = io.BytesIO()
|
| 255 |
+
plt.savefig(buf, format='png', dpi=100, bbox_inches='tight')
|
| 256 |
+
buf.seek(0)
|
| 257 |
+
plt.close()
|
| 258 |
+
|
| 259 |
+
return Image.open(buf)
|
| 260 |
+
|
| 261 |
+
# ==================== INTERFAZ GRADIO ====================
|
| 262 |
+
|
| 263 |
+
# CSS personalizado
|
| 264 |
+
custom_css = """
|
| 265 |
+
.gradio-container {
|
| 266 |
+
font-family: 'Arial', sans-serif;
|
| 267 |
+
}
|
| 268 |
+
.tab-nav button {
|
| 269 |
+
font-size: 16px;
|
| 270 |
+
font-weight: bold;
|
| 271 |
+
}
|
| 272 |
+
"""
|
| 273 |
+
|
| 274 |
+
# Crear interfaz
|
| 275 |
+
with gr.Blocks(css=custom_css, title="GAN Interactive Demo - MNIST", theme=gr.themes.Soft()) as demo:
|
| 276 |
+
|
| 277 |
+
gr.Markdown("""
|
| 278 |
+
# 🎨 GAN Interactive Demo - Exploración del Espacio Latente
|
| 279 |
+
|
| 280 |
+
### Generative Adversarial Network entrenada en MNIST
|
| 281 |
+
|
| 282 |
+
Explora cómo una GAN aprende a generar dígitos manuscritos desde vectores de ruido aleatorio.
|
| 283 |
+
Inspirado en el TensorFlow Projector, esta demo te permite navegar el espacio latente de 100 dimensiones.
|
| 284 |
+
""")
|
| 285 |
+
|
| 286 |
+
with gr.Tabs():
|
| 287 |
+
|
| 288 |
+
# TAB 1: Generación Simple
|
| 289 |
+
with gr.Tab("🎲 Generación Aleatoria"):
|
| 290 |
+
gr.Markdown("### Genera dígitos aleatorios con un clic")
|
| 291 |
+
|
| 292 |
+
with gr.Row():
|
| 293 |
+
with gr.Column(scale=1):
|
| 294 |
+
btn_generate = gr.Button("🎲 Generar Dígito Aleatorio", variant="primary", size="lg")
|
| 295 |
+
latent_info = gr.Textbox(label="Información del Vector Latente", lines=2)
|
| 296 |
+
|
| 297 |
+
with gr.Column(scale=1):
|
| 298 |
+
output_image = gr.Image(label="Dígito Generado", type="pil")
|
| 299 |
+
|
| 300 |
+
btn_generate.click(
|
| 301 |
+
fn=generate_random_digit,
|
| 302 |
+
outputs=[output_image, latent_info]
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
# TAB 2: Control Manual
|
| 306 |
+
with gr.Tab("🎛️ Control Manual"):
|
| 307 |
+
gr.Markdown("### Controla las primeras 10 dimensiones del vector latente")
|
| 308 |
+
gr.Markdown("Ajusta los sliders para ver cómo cada dimensión afecta la generación")
|
| 309 |
+
|
| 310 |
+
with gr.Row():
|
| 311 |
+
with gr.Column(scale=1):
|
| 312 |
+
sliders = []
|
| 313 |
+
for i in range(10):
|
| 314 |
+
slider = gr.Slider(
|
| 315 |
+
minimum=-3,
|
| 316 |
+
maximum=3,
|
| 317 |
+
value=0,
|
| 318 |
+
step=0.1,
|
| 319 |
+
label=f"Dimensión {i+1}"
|
| 320 |
+
)
|
| 321 |
+
sliders.append(slider)
|
| 322 |
+
|
| 323 |
+
btn_generate_sliders = gr.Button("Generar desde Sliders", variant="primary")
|
| 324 |
+
|
| 325 |
+
with gr.Column(scale=1):
|
| 326 |
+
output_image_sliders = gr.Image(label="Dígito Generado", type="pil")
|
| 327 |
+
|
| 328 |
+
btn_generate_sliders.click(
|
| 329 |
+
fn=generate_from_sliders,
|
| 330 |
+
inputs=sliders,
|
| 331 |
+
outputs=output_image_sliders
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
# TAB 3: Interpolación
|
| 335 |
+
with gr.Tab("🔄 Interpolación"):
|
| 336 |
+
gr.Markdown("### Morphing entre dos dígitos")
|
| 337 |
+
gr.Markdown("Observa cómo la GAN transforma suavemente un dígito en otro")
|
| 338 |
+
|
| 339 |
+
with gr.Row():
|
| 340 |
+
with gr.Column(scale=1):
|
| 341 |
+
start_seed = gr.Number(label="Semilla Inicial", value=42)
|
| 342 |
+
end_seed = gr.Number(label="Semilla Final", value=123)
|
| 343 |
+
steps = gr.Slider(
|
| 344 |
+
minimum=5,
|
| 345 |
+
maximum=20,
|
| 346 |
+
value=10,
|
| 347 |
+
step=1,
|
| 348 |
+
label="Número de Pasos"
|
| 349 |
+
)
|
| 350 |
+
btn_interpolate = gr.Button("🔄 Generar Interpolación", variant="primary")
|
| 351 |
+
|
| 352 |
+
with gr.Column(scale=2):
|
| 353 |
+
output_interpolation = gr.Image(label="Secuencia de Interpolación")
|
| 354 |
+
|
| 355 |
+
btn_interpolate.click(
|
| 356 |
+
fn=interpolate_digits,
|
| 357 |
+
inputs=[start_seed, end_seed, steps],
|
| 358 |
+
outputs=output_interpolation
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
# TAB 4: Exploración del Espacio Latente
|
| 362 |
+
with gr.Tab("🌌 Espacio Latente"):
|
| 363 |
+
gr.Markdown("### Visualización del Espacio Latente de 100 Dimensiones")
|
| 364 |
+
gr.Markdown("Similar al TensorFlow Projector: explora cómo se distribuyen los vectores latentes")
|
| 365 |
+
|
| 366 |
+
with gr.Row():
|
| 367 |
+
with gr.Column(scale=1):
|
| 368 |
+
gr.Markdown("#### Visualización 3D (PCA)")
|
| 369 |
+
btn_pca = gr.Button("Mostrar PCA 3D", variant="secondary")
|
| 370 |
+
plot_pca = gr.Plot(label="Espacio Latente - PCA")
|
| 371 |
+
|
| 372 |
+
btn_pca.click(
|
| 373 |
+
fn=visualize_latent_space_pca,
|
| 374 |
+
outputs=plot_pca
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
with gr.Column(scale=1):
|
| 378 |
+
gr.Markdown("#### Visualización 2D (t-SNE)")
|
| 379 |
+
btn_tsne = gr.Button("Mostrar t-SNE 2D", variant="secondary")
|
| 380 |
+
plot_tsne = gr.Plot(label="Espacio Latente - t-SNE")
|
| 381 |
+
|
| 382 |
+
btn_tsne.click(
|
| 383 |
+
fn=visualize_latent_space_tsne,
|
| 384 |
+
outputs=plot_tsne
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
gr.Markdown("---")
|
| 388 |
+
gr.Markdown("#### Genera desde un punto específico del espacio")
|
| 389 |
+
|
| 390 |
+
with gr.Row():
|
| 391 |
+
with gr.Column(scale=1):
|
| 392 |
+
latent_index = gr.Slider(
|
| 393 |
+
minimum=0,
|
| 394 |
+
maximum=999,
|
| 395 |
+
value=0,
|
| 396 |
+
step=1,
|
| 397 |
+
label="Índice del Vector Latente"
|
| 398 |
+
)
|
| 399 |
+
btn_generate_index = gr.Button("Generar desde Índice", variant="primary")
|
| 400 |
+
latent_index_info = gr.Textbox(label="Información", lines=2)
|
| 401 |
+
|
| 402 |
+
with gr.Column(scale=1):
|
| 403 |
+
output_image_index = gr.Image(label="Dígito Generado", type="pil")
|
| 404 |
+
|
| 405 |
+
btn_generate_index.click(
|
| 406 |
+
fn=generate_from_latent_index,
|
| 407 |
+
inputs=latent_index,
|
| 408 |
+
outputs=[output_image_index, latent_index_info]
|
| 409 |
+
)
|
| 410 |
+
|
| 411 |
+
# TAB 5: Grid de Comparación
|
| 412 |
+
with gr.Tab("📊 Grid de Dígitos"):
|
| 413 |
+
gr.Markdown("### Genera múltiples dígitos simultáneamente")
|
| 414 |
+
gr.Markdown("Observa la diversidad y calidad de las generaciones")
|
| 415 |
+
|
| 416 |
+
with gr.Row():
|
| 417 |
+
with gr.Column(scale=1):
|
| 418 |
+
btn_grid = gr.Button("🎨 Generar Grid 4×4", variant="primary", size="lg")
|
| 419 |
+
|
| 420 |
+
with gr.Column(scale=2):
|
| 421 |
+
output_grid = gr.Image(label="Grid de 16 Dígitos Generados")
|
| 422 |
+
|
| 423 |
+
btn_grid.click(
|
| 424 |
+
fn=generate_grid_comparison,
|
| 425 |
+
outputs=output_grid
|
| 426 |
+
)
|
| 427 |
+
|
| 428 |
+
gr.Markdown("""
|
| 429 |
+
---
|
| 430 |
+
### 📚 Sobre esta Demo
|
| 431 |
+
|
| 432 |
+
Esta aplicación interactiva demuestra el poder de las **Redes Generativas Adversarias (GANs)** entrenadas en el dataset MNIST.
|
| 433 |
+
|
| 434 |
+
**Características:**
|
| 435 |
+
- **Espacio Latente de 100 dimensiones**: Cada dígito es generado desde un vector de 100 números aleatorios
|
| 436 |
+
- **Visualización dimensional**: PCA y t-SNE reducen las 100 dimensiones a 2D/3D para visualización
|
| 437 |
+
- **Interpolación suave**: Demuestra que el espacio latente es continuo y significativo
|
| 438 |
+
- **Generación instantánea**: Sin necesidad de re-entrenar
|
| 439 |
+
|
| 440 |
+
**Arquitectura:**
|
| 441 |
+
- **Generador**: 7×7×256 → 14×14×64 → 28×28×1 (Conv2DTranspose + BatchNorm + LeakyReLU)
|
| 442 |
+
- **Discriminador**: 28×28×1 → 14×14×64 → 7×7×128 → Logit (Conv2D + Dropout)
|
| 443 |
+
- **Entrenamiento**: 50 épocas, Adam optimizer, Binary Cross-Entropy loss
|
| 444 |
+
|
| 445 |
+
🎓 **Creado para la clase de Machine Learning**
|
| 446 |
+
""")
|
| 447 |
+
|
| 448 |
+
# Lanzar aplicación
|
| 449 |
+
if __name__ == "__main__":
|
| 450 |
+
demo.launch(
|
| 451 |
+
server_name="0.0.0.0",
|
| 452 |
+
server_port=7860,
|
| 453 |
+
share=False
|
| 454 |
+
)
|
| 455 |
+
|
models/discriminator.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d4c7a7eb2c30e6f8eea1e2261d6d2b41d0925ba1df198fb472c6547faf302dc1
|
| 3 |
+
size 873256
|
models/discriminator_savedmodel/fingerprint.pb
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:99a353251f83551ff81f574cd31085dad05eae44b36b07400c367579886b0d52
|
| 3 |
+
size 55
|
models/discriminator_savedmodel/keras_metadata.pb
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b5bf683f66c81bbb8eb1d548b5b5e3de72b0e378dcfefb0d864124f1197ecfae
|
| 3 |
+
size 13555
|
models/discriminator_savedmodel/saved_model.pb
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:34c409dc55def9e2f0e58f75eea3e7412d3b2d4f7f3a9fe86eab2b3d5afc9c4f
|
| 3 |
+
size 92712
|
models/discriminator_savedmodel/variables/variables.data-00000-of-00001
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:59280875c454706a80950787a59a4e2a223e35b8b1e25134c06bfc8108c35638
|
| 3 |
+
size 857347
|
models/discriminator_savedmodel/variables/variables.index
ADDED
|
Binary file (531 Bytes). View file
|
|
|
models/generated_images.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5e5381c6c3e45fe55c4d45423f6faf6b8d466b012a826a69234111f8b4778fa1
|
| 3 |
+
size 3136128
|
models/generator.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb6036b3d1bc563a009cb864abe82c1f87458cbd6e72763cdc9cdae574ca2ca9
|
| 3 |
+
size 9360360
|
models/generator_savedmodel/fingerprint.pb
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5f84ba1ef8470a5cf24820da346580becc43aa9fa88c00c403652e2e0085f902
|
| 3 |
+
size 58
|
models/generator_savedmodel/keras_metadata.pb
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2fd33ef59514d53bbbedc05f85a6be41d5af12170c7a897cdb7d55b68a871eff
|
| 3 |
+
size 23085
|
models/generator_savedmodel/saved_model.pb
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3e71a0961140f3f0de62738b44c259d65bf84e914fb2f78a6dc766e03716b816
|
| 3 |
+
size 206137
|
models/generator_savedmodel/variables/variables.data-00000-of-00001
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4d2567eba9c76db107ad63b4634d3b8846da019eaeaaf024d35f92b24fa1b48f
|
| 3 |
+
size 9333142
|
models/generator_savedmodel/variables/variables.index
ADDED
|
Binary file (1.2 kB). View file
|
|
|
models/image_at_epoch_0005.png
ADDED
|
models/image_at_epoch_0010.png
ADDED
|
models/image_at_epoch_0015.png
ADDED
|
models/image_at_epoch_0020.png
ADDED
|
models/image_at_epoch_0025.png
ADDED
|
models/image_at_epoch_0030.png
ADDED
|
models/image_at_epoch_0035.png
ADDED
|
models/image_at_epoch_0040.png
ADDED
|
models/image_at_epoch_0045.png
ADDED
|
models/image_at_epoch_0050.png
ADDED
|
models/latent_vectors.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2b3e61ba71dcc0fe80561e9c39aa7cb651893b18e6548c54dae3eedc1d63b37d
|
| 3 |
+
size 400128
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.44.0
|
| 2 |
+
tensorflow==2.15.0
|
| 3 |
+
numpy==1.24.3
|
| 4 |
+
matplotlib==3.7.1
|
| 5 |
+
plotly==5.18.0
|
| 6 |
+
scikit-learn==1.3.2
|
| 7 |
+
Pillow==10.1.0
|
| 8 |
+
|