import gradio as gr import numpy as np import matplotlib.pyplot as plt def optimize_and_plot(lr=0.01, steps=50): def convex_fn(x): return x**2 def nonconvex_fn(x): return x**4 - 3*x**3 + 2 def grad_convex(x): return 2*x def grad_nonconvex(x): return 4*x**3 - 9*x**2 def gradient_descent(f, grad_f, x0): x_vals, y_vals = [x0], [f(x0)] x = x0 for _ in range(steps): x -= lr * grad_f(x) x_vals.append(x) y_vals.append(f(x)) return x_vals, y_vals x_c, y_c = gradient_descent(convex_fn, grad_convex, x0=5) x_nc, y_nc = gradient_descent(nonconvex_fn, grad_nonconvex, x0=2) fig, axs = plt.subplots(1, 2, figsize=(10, 4)) x = np.linspace(-1, 6, 100) axs[0].plot(x, convex_fn(x), label='Convex Function') axs[0].scatter(x_c, y_c, c='red', s=10, label='Descent Path') axs[0].set_title('Convex Optimization') axs[0].legend() axs[1].plot(x, nonconvex_fn(x), label='Non-Convex Function') axs[1].scatter(x_nc, y_nc, c='purple', s=10, label='Descent Path') axs[1].set_title('Non-Convex Optimization') axs[1].legend() plt.tight_layout() return fig demo = gr.Interface(fn=optimize_and_plot, inputs=[gr.Slider(0.001, 0.1, value=0.01, label="Learning Rate"), gr.Slider(10, 100, value=50, label="Steps")], outputs=gr.Plot(), title="Convex vs Non-Convex Optimization", description="Visualize gradient descent on convex and non-convex functions.") demo.launch()