Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Convex vs Non-Convex Optimization Demo (Colab-ready)
|
| 2 |
+
import numpy as np
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
|
| 5 |
+
# Define convex and non-convex functions
|
| 6 |
+
def convex_fn(x): return x**2
|
| 7 |
+
def nonconvex_fn(x): return x**4 - 3*x**3 + 2
|
| 8 |
+
|
| 9 |
+
# Gradient functions
|
| 10 |
+
def grad_convex(x): return 2*x
|
| 11 |
+
def grad_nonconvex(x): return 4*x**3 - 9*x**2
|
| 12 |
+
|
| 13 |
+
# Gradient descent
|
| 14 |
+
def gradient_descent(f, grad_f, x0, lr=0.01, steps=50):
|
| 15 |
+
x_vals, y_vals = [x0], [f(x0)]
|
| 16 |
+
x = x0
|
| 17 |
+
for _ in range(steps):
|
| 18 |
+
x -= lr * grad_f(x)
|
| 19 |
+
x_vals.append(x)
|
| 20 |
+
y_vals.append(f(x))
|
| 21 |
+
return x_vals, y_vals
|
| 22 |
+
|
| 23 |
+
# Run optimization
|
| 24 |
+
x_c, y_c = gradient_descent(convex_fn, grad_convex, x0=5)
|
| 25 |
+
x_nc, y_nc = gradient_descent(nonconvex_fn, grad_nonconvex, x0=2)
|
| 26 |
+
|
| 27 |
+
# Plotting
|
| 28 |
+
fig, axs = plt.subplots(1, 2, figsize=(12, 4))
|
| 29 |
+
x = np.linspace(-1, 6, 100)
|
| 30 |
+
|
| 31 |
+
axs[0].plot(x, convex_fn(x), label='Convex Function')
|
| 32 |
+
axs[0].scatter(x_c, y_c, c='red', s=10, label='Gradient Descent Path')
|
| 33 |
+
axs[0].set_title('Convex Optimization')
|
| 34 |
+
axs[0].legend()
|
| 35 |
+
|
| 36 |
+
axs[1].plot(x, nonconvex_fn(x), label='Non-Convex Function')
|
| 37 |
+
axs[1].scatter(x_nc, y_nc, c='purple', s=10, label='Gradient Descent Path')
|
| 38 |
+
axs[1].set_title('Non-Convex Optimization')
|
| 39 |
+
axs[1].legend()
|
| 40 |
+
|
| 41 |
+
plt.tight_layout()
|
| 42 |
+
plt.show()
|