File size: 1,601 Bytes
36ecdd3
82e2823
 
 
36ecdd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt

def optimize_and_plot(lr=0.01, steps=50):
    def convex_fn(x): return x**2
    def nonconvex_fn(x): return x**4 - 3*x**3 + 2
    def grad_convex(x): return 2*x
    def grad_nonconvex(x): return 4*x**3 - 9*x**2

    def gradient_descent(f, grad_f, x0):
        x_vals, y_vals = [x0], [f(x0)]
        x = x0
        for _ in range(steps):
            x -= lr * grad_f(x)
            x_vals.append(x)
            y_vals.append(f(x))
        return x_vals, y_vals

    x_c, y_c = gradient_descent(convex_fn, grad_convex, x0=5)
    x_nc, y_nc = gradient_descent(nonconvex_fn, grad_nonconvex, x0=2)

    fig, axs = plt.subplots(1, 2, figsize=(10, 4))
    x = np.linspace(-1, 6, 100)

    axs[0].plot(x, convex_fn(x), label='Convex Function')
    axs[0].scatter(x_c, y_c, c='red', s=10, label='Descent Path')
    axs[0].set_title('Convex Optimization')
    axs[0].legend()

    axs[1].plot(x, nonconvex_fn(x), label='Non-Convex Function')
    axs[1].scatter(x_nc, y_nc, c='purple', s=10, label='Descent Path')
    axs[1].set_title('Non-Convex Optimization')
    axs[1].legend()

    plt.tight_layout()
    return fig

demo = gr.Interface(fn=optimize_and_plot,
                    inputs=[gr.Slider(0.001, 0.1, value=0.01, label="Learning Rate"),
                            gr.Slider(10, 100, value=50, label="Steps")],
                    outputs=gr.Plot(),
                    title="Convex vs Non-Convex Optimization",
                    description="Visualize gradient descent on convex and non-convex functions.")

demo.launch()