Spaces:
Running
Running
Cleaning and removing df copy causing storage issue
Browse files
app.py
CHANGED
|
@@ -1,145 +1,64 @@
|
|
| 1 |
-
import subprocess
|
| 2 |
-
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
| 5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 6 |
from huggingface_hub import snapshot_download
|
| 7 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
from src.about import (
|
| 10 |
-
CITATION_BUTTON_LABEL,
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
INTRODUCTION_TEXT,
|
| 14 |
-
LLM_BENCHMARKS_TEXT_1,
|
| 15 |
-
LLM_BENCHMARKS_TEXT_2,
|
| 16 |
-
CROSS_EVALUATION_METRICS,
|
| 17 |
-
NOTE_GENERATION_METRICS,
|
| 18 |
-
HEALTHBENCH_METRICS,
|
| 19 |
-
# EVALUATION_EXAMPLE_IMG,
|
| 20 |
-
# LLM_BENCHMARKS_TEXT_2,
|
| 21 |
-
# ENTITY_DISTRIBUTION_IMG,
|
| 22 |
-
# LLM_BENCHMARKS_TEXT_3,
|
| 23 |
-
TITLE,
|
| 24 |
-
LOGO,
|
| 25 |
-
FIVE_PILLAR_DIAGRAM
|
| 26 |
)
|
| 27 |
from src.display.css_html_js import custom_css
|
| 28 |
-
# changes to be made here
|
| 29 |
from src.display.utils import (
|
| 30 |
-
DATASET_BENCHMARK_COLS,
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
MEDICAL_SUMMARIZATION_COLS,
|
| 42 |
-
ACI_COLS,
|
| 43 |
-
SOAP_COLS,
|
| 44 |
-
HEALTHBENCH_COLS,
|
| 45 |
-
HEALTHBENCH_HARD_COLS,
|
| 46 |
-
EVAL_COLS,
|
| 47 |
-
EVAL_TYPES,
|
| 48 |
-
NUMERIC_INTERVALS,
|
| 49 |
-
TYPES,
|
| 50 |
-
AutoEvalColumn,
|
| 51 |
-
ModelType,
|
| 52 |
-
ModelArch,
|
| 53 |
-
PromptTemplateName,
|
| 54 |
-
Precision,
|
| 55 |
-
WeightType,
|
| 56 |
-
fields,
|
| 57 |
-
render_generation_templates,
|
| 58 |
-
OpenEndedArabic_COLS,
|
| 59 |
-
OpenEndedArabic_BENCHMARK_COLS,
|
| 60 |
-
OpenEndedFrench_COLS,
|
| 61 |
-
OpenEndedFrench_BENCHMARK_COLS,
|
| 62 |
-
OpenEndedPortuguese_COLS,
|
| 63 |
-
OpenEndedPortuguese_BENCHMARK_COLS,
|
| 64 |
-
OpenEndedRomanian_COLS,
|
| 65 |
-
OpenEndedRomanian_BENCHMARK_COLS,
|
| 66 |
-
OpenEndedGreek_COLS,
|
| 67 |
-
OpenEndedGreek_BENCHMARK_COLS,
|
| 68 |
-
OpenEndedSpanish_COLS,
|
| 69 |
-
OpenEndedSpanish_BENCHMARK_COLS,
|
| 70 |
-
ClosedEndedMultilingual_COLS,
|
| 71 |
-
ClosedEndedMultilingual_BENCHMARK_COLS,
|
| 72 |
)
|
| 73 |
-
|
| 74 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, PRIVATE_REPO
|
| 75 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 76 |
-
from src.submission.submit import add_new_eval
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
def restart_space():
|
| 79 |
API.restart_space(repo_id=REPO_ID)
|
| 80 |
|
| 81 |
|
| 82 |
-
print(
|
| 83 |
-
print(f"RESULTS_REPO: {RESULTS_REPO}")
|
| 84 |
-
print(f"EVAL_REQUESTS_PATH: {EVAL_REQUESTS_PATH}")
|
| 85 |
-
print(f"EVAL_RESULTS_PATH: {EVAL_RESULTS_PATH}")
|
| 86 |
-
print(f"TOKEN: {TOKEN}")
|
| 87 |
-
|
| 88 |
-
try:
|
| 89 |
-
print(f"EVAL_REQUESTS_PATH: {EVAL_REQUESTS_PATH}")
|
| 90 |
-
snapshot_download(
|
| 91 |
-
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
| 92 |
-
)
|
| 93 |
-
print(f"EVAL_REQUESTS_PATH downloaded")
|
| 94 |
-
except Exception:
|
| 95 |
-
print("An error occurred while downloading EVAL_REQUESTS_PATH. Please check the connection or the repository settings.")
|
| 96 |
-
restart_space()
|
| 97 |
try:
|
| 98 |
-
|
| 99 |
-
snapshot_download(
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
print(f"
|
| 103 |
-
except Exception:
|
| 104 |
-
print("An error occurred while downloading EVAL_RESULTS_PATH. Please check the connection or the repository settings.")
|
| 105 |
restart_space()
|
| 106 |
|
| 107 |
-
|
| 108 |
-
# changes to be made here
|
| 109 |
-
|
| 110 |
start_time = time.time()
|
| 111 |
|
| 112 |
_, harness_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "accuracy", "datasets")
|
| 113 |
-
harness_datasets_leaderboard_df = harness_datasets_original_df.copy()
|
| 114 |
-
print("Closed ended English results loaded")
|
| 115 |
-
|
| 116 |
_, open_ended_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OPEN_ENDED_COLS, OPEN_ENDED_BENCHMARK_COLS, "score", "open_ended")
|
| 117 |
-
open_ended_leaderboard_df = open_ended_original_df.copy()
|
| 118 |
-
print("Open ended English results loaded")
|
| 119 |
-
|
| 120 |
_, med_safety_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, MED_SAFETY_COLS, MED_SAFETY_BENCHMARK_COLS, "score", "med_safety")
|
| 121 |
-
med_safety_leaderboard_df = med_safety_original_df.copy()
|
| 122 |
-
print("Med safety results loaded")
|
| 123 |
-
|
| 124 |
_, medical_summarization_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, MEDICAL_SUMMARIZATION_COLS, MEDICAL_SUMMARIZATION_BENCHMARK_COLS, "score", "medical_summarization")
|
| 125 |
-
medical_summarization_leaderboard_df = medical_summarization_original_df.copy()
|
| 126 |
-
print("Medical summarization results loaded")
|
| 127 |
-
|
| 128 |
_, aci_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ACI_COLS, ACI_BENCHMARK_COLS, "score", "aci")
|
| 129 |
-
aci_leaderboard_df = aci_original_df.copy()
|
| 130 |
-
print("ACI results loaded")
|
| 131 |
-
|
| 132 |
_, soap_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, SOAP_COLS, SOAP_BENCHMARK_COLS, "score", "soap")
|
| 133 |
-
soap_leaderboard_df = soap_original_df.copy()
|
| 134 |
-
print("SOAP results loaded")
|
| 135 |
-
|
| 136 |
_, healthbench_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, HEALTHBENCH_COLS, HEALTHBENCH_BENCHMARK_COLS, "score", "healthbench")
|
| 137 |
-
healthbench_leaderboard_df = healthbench_original_df.copy()
|
| 138 |
-
|
| 139 |
_, healthbench_hard_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, HEALTHBENCH_HARD_COLS, HEALTHBENCH_HARD_BENCHMARK_COLS, "score", "healthbench_hard")
|
| 140 |
-
healthbench_hard_leaderboard_df = healthbench_hard_original_df.copy()
|
| 141 |
-
print("Healthbench results loaded")
|
| 142 |
-
|
| 143 |
_, open_ended_arabic_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedArabic_COLS, OpenEndedArabic_BENCHMARK_COLS, "score", "open_ended_arabic")
|
| 144 |
_, open_ended_french_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedFrench_COLS, OpenEndedFrench_BENCHMARK_COLS, "score", "open_ended_french")
|
| 145 |
_, open_ended_portuguese_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedPortuguese_COLS, OpenEndedPortuguese_BENCHMARK_COLS, "score", "open_ended_portuguese")
|
|
@@ -148,128 +67,36 @@ _, open_ended_greek_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PAT
|
|
| 148 |
_, open_ended_spanish_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedSpanish_COLS, OpenEndedSpanish_BENCHMARK_COLS, "score", "open_ended_spanish")
|
| 149 |
_, closed_ended_multilingual_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ClosedEndedMultilingual_COLS, ClosedEndedMultilingual_BENCHMARK_COLS, "score", "closed_ended_multilingual")
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
end_time = time.time()
|
| 164 |
-
|
| 165 |
-
print(f"Total time taken to load all results: {total_time:.2f} seconds")
|
| 166 |
-
|
| 167 |
-
# breakpoint()
|
| 168 |
-
# # Token based results
|
| 169 |
-
# _, token_based_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "datasets")
|
| 170 |
-
# token_based_datasets_leaderboard_df = token_based_datasets_original_df.copy()
|
| 171 |
-
|
| 172 |
-
# _, token_based_types_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, Clinical_TYPES_COLS, TYPES_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "clinical_types")
|
| 173 |
-
# token_based_types_leaderboard_df = token_based_types_original_df.copy()
|
| 174 |
|
|
|
|
|
|
|
| 175 |
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
pending_eval_queue_df,
|
| 180 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 181 |
-
|
| 182 |
-
# breakpoint()
|
| 183 |
-
def update_df(shown_columns, subset="datasets"):
|
| 184 |
-
# changes to be made here
|
| 185 |
-
if subset == "datasets":
|
| 186 |
-
leaderboard_table_df = harness_datasets_leaderboard_df.copy()
|
| 187 |
-
hidden_leader_board_df = harness_datasets_original_df
|
| 188 |
-
elif subset == "open_ended":
|
| 189 |
-
leaderboard_table_df = open_ended_leaderboard_df.copy()
|
| 190 |
-
hidden_leader_board_df = open_ended_original_df
|
| 191 |
-
elif subset == "med_safety":
|
| 192 |
-
leaderboard_table_df = med_safety_leaderboard_df.copy()
|
| 193 |
-
hidden_leader_board_df = med_safety_original_df
|
| 194 |
-
elif subset == "medical_summarization":
|
| 195 |
-
leaderboard_table_df = medical_summarization_leaderboard_df.copy()
|
| 196 |
-
hidden_leader_board_df = medical_summarization_original_df
|
| 197 |
-
elif subset == "aci":
|
| 198 |
-
leaderboard_table_df = aci_leaderboard_df.copy()
|
| 199 |
-
hidden_leader_board_df = aci_original_df
|
| 200 |
-
elif subset == "soap":
|
| 201 |
-
leaderboard_table_df = soap_leaderboard_df.copy()
|
| 202 |
-
hidden_leader_board_df = soap_original_df
|
| 203 |
-
elif subset == "healthbench":
|
| 204 |
-
leaderboard_table_df = healthbench_leaderboard_df.copy()
|
| 205 |
-
hidden_leader_board_df = healthbench_original_df
|
| 206 |
-
elif subset == "healthbench_hard":
|
| 207 |
-
leaderboard_table_df = healthbench_hard_leaderboard_df.copy()
|
| 208 |
-
hidden_leader_board_df = healthbench_hard_original_df
|
| 209 |
-
elif subset == "open_ended_arabic":
|
| 210 |
-
leaderboard_table_df = open_ended_arabic_df.copy()
|
| 211 |
-
hidden_leader_board_df = open_ended_arabic_df
|
| 212 |
-
elif subset == "open_ended_french":
|
| 213 |
-
leaderboard_table_df = open_ended_french_df.copy()
|
| 214 |
-
hidden_leader_board_df = open_ended_french_df
|
| 215 |
-
elif subset == "open_ended_portuguese":
|
| 216 |
-
leaderboard_table_df = open_ended_portuguese_df.copy()
|
| 217 |
-
hidden_leader_board_df = open_ended_portuguese_df
|
| 218 |
-
elif subset == "open_ended_romanian":
|
| 219 |
-
leaderboard_table_df = open_ended_romanian_df.copy()
|
| 220 |
-
hidden_leader_board_df = open_ended_romanian_df
|
| 221 |
-
elif subset == "open_ended_greek":
|
| 222 |
-
leaderboard_table_df = open_ended_greek_df.copy()
|
| 223 |
-
hidden_leader_board_df = open_ended_greek_df
|
| 224 |
-
elif subset == "open_ended_spanish":
|
| 225 |
-
leaderboard_table_df = open_ended_spanish_df.copy()
|
| 226 |
-
hidden_leader_board_df = open_ended_spanish_df
|
| 227 |
-
elif subset == "closed_ended_multilingual":
|
| 228 |
-
leaderboard_table_df = closed_ended_multilingual_df.copy()
|
| 229 |
-
hidden_leader_board_df = closed_ended_multilingual_df
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
value_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns
|
| 233 |
-
# breakpoint()
|
| 234 |
-
return leaderboard_table_df[value_cols], hidden_leader_board_df
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
# Searching and filtering
|
| 238 |
-
def update_table(
|
| 239 |
-
hidden_df: pd.DataFrame,
|
| 240 |
-
columns: list,
|
| 241 |
-
query: str = "",
|
| 242 |
-
# type_query: list = None,
|
| 243 |
-
domain_specific_query: list = None,
|
| 244 |
-
size_query: list = None,
|
| 245 |
-
precision_query: str = None,
|
| 246 |
-
show_deleted: bool = False,
|
| 247 |
-
):
|
| 248 |
-
# breakpoint()
|
| 249 |
-
type_query = None
|
| 250 |
-
filtered_df = filter_models(hidden_df, type_query, domain_specific_query, size_query, precision_query, show_deleted)
|
| 251 |
-
# breakpoint()
|
| 252 |
-
filtered_df = filter_queries(query, filtered_df)
|
| 253 |
-
# breakpoint()
|
| 254 |
-
df = select_columns(filtered_df, columns, list(hidden_df.columns))
|
| 255 |
-
# breakpoint()
|
| 256 |
-
return df
|
| 257 |
-
|
| 258 |
|
| 259 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 260 |
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
|
| 261 |
|
| 262 |
-
|
| 263 |
-
def select_columns(df: pd.DataFrame, columns: list, cols:list) -> pd.DataFrame:
|
| 264 |
-
always_here_cols = [
|
| 265 |
-
AutoEvalColumn.model_type_symbol.name,
|
| 266 |
-
AutoEvalColumn.model.name,
|
| 267 |
-
]
|
| 268 |
-
# We use COLS to maintain sorting
|
| 269 |
-
filtered_df = df[always_here_cols + [c for c in cols if c in df.columns and c in columns]]
|
| 270 |
-
return filtered_df
|
| 271 |
-
|
| 272 |
-
|
| 273 |
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
| 274 |
final_df = []
|
| 275 |
if query != "":
|
|
@@ -285,8 +112,6 @@ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
|
| 285 |
filtered_df = filtered_df.drop_duplicates(
|
| 286 |
subset=[
|
| 287 |
AutoEvalColumn.model.name,
|
| 288 |
-
# AutoEvalColumn.precision.name,
|
| 289 |
-
# AutoEvalColumn.revision.name,
|
| 290 |
]
|
| 291 |
)
|
| 292 |
|
|
@@ -296,11 +121,6 @@ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
|
| 296 |
def filter_models(
|
| 297 |
df: pd.DataFrame, type_query: list, domain_specific_query: list, size_query: list, precision_query: list, show_deleted: bool
|
| 298 |
) -> pd.DataFrame:
|
| 299 |
-
# Show all models
|
| 300 |
-
# if show_deleted:
|
| 301 |
-
# filtered_df = df
|
| 302 |
-
# else: # Show only still on the hub models
|
| 303 |
-
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
| 304 |
|
| 305 |
filtered_df = df
|
| 306 |
|
|
@@ -315,12 +135,7 @@ def filter_models(
|
|
| 315 |
if "Generic models" in domain_specific_query:
|
| 316 |
domain_specifics.append(False)
|
| 317 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.is_domain_specific.name].isin(domain_specifics)]
|
| 318 |
-
|
| 319 |
-
# if architecture_query is not None:
|
| 320 |
-
# arch_types = [t for t in architecture_query]
|
| 321 |
-
# filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(arch_types)]
|
| 322 |
-
# # filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(architecture_query + ["None"])]
|
| 323 |
-
|
| 324 |
if precision_query is not None:
|
| 325 |
if AutoEvalColumn.precision.name in df.columns:
|
| 326 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
|
@@ -333,1075 +148,225 @@ def filter_models(
|
|
| 333 |
|
| 334 |
return filtered_df
|
| 335 |
|
| 336 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
demo = gr.Blocks(css=custom_css)
|
|
|
|
| 338 |
with demo:
|
| 339 |
-
print("hello")
|
| 340 |
gr.HTML(LOGO)
|
| 341 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 342 |
-
|
| 343 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 344 |
with gr.TabItem("π
Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=1):
|
| 345 |
with gr.Tabs(elem_classes="tab-buttons6") as language_tabs:
|
| 346 |
LANGUAGES = {
|
| 347 |
-
"πΊπΈ English": "open_ended",
|
| 348 |
-
"
|
| 349 |
-
"
|
| 350 |
-
"πͺπΈ Spanish": "open_ended_spanish",
|
| 351 |
-
"π΅πΉ Portuguese": "open_ended_portuguese",
|
| 352 |
-
"π·π΄ Romanian": "open_ended_romanian",
|
| 353 |
"π¬π· Greek": "open_ended_greek",
|
| 354 |
}
|
| 355 |
-
|
| 356 |
for idx, (label, subset) in enumerate(LANGUAGES.items()):
|
| 357 |
with gr.TabItem(label, elem_id=f"llm-benchmark-tab-open-{subset}", id=idx):
|
| 358 |
-
|
| 359 |
-
if label == "πΊπΈ English":
|
| 360 |
-
judge_text = "**Note:** Llama 3.1 70B Instruct has been used as judge for English."
|
| 361 |
-
else:
|
| 362 |
-
judge_text = "**Note:** Qwen 2.5 72B Instruct has been used as judge for this language."
|
| 363 |
-
|
| 364 |
gr.Markdown(judge_text, elem_classes="markdown-text")
|
| 365 |
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
placeholder=f"π Search for your model in {label}...",
|
| 371 |
-
show_label=False,
|
| 372 |
-
elem_id=f"search-bar-{subset}",
|
| 373 |
-
)
|
| 374 |
-
with gr.Row():
|
| 375 |
-
shown_columns = gr.CheckboxGroup(
|
| 376 |
-
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)],
|
| 377 |
-
value=[
|
| 378 |
-
c.name
|
| 379 |
-
for c in fields(AutoEvalColumn)
|
| 380 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)
|
| 381 |
-
],
|
| 382 |
-
label="Select columns to show",
|
| 383 |
-
elem_id=f"column-select-{subset}",
|
| 384 |
-
interactive=True,
|
| 385 |
-
)
|
| 386 |
-
with gr.Column(min_width=320):
|
| 387 |
-
# filter_columns_type = gr.CheckboxGroup(
|
| 388 |
-
# label="Model Types",
|
| 389 |
-
# choices=[t.to_str() for t in ModelType],
|
| 390 |
-
# value=[t.to_str() for t in ModelType],
|
| 391 |
-
# interactive=True,
|
| 392 |
-
# elem_id=f"filter-columns-type-{subset}",
|
| 393 |
-
# )
|
| 394 |
-
|
| 395 |
-
filter_domain_specific = gr.CheckboxGroup(
|
| 396 |
-
label="Domain Specificity",
|
| 397 |
-
choices=["π₯ Clinical models", "Generic models"],
|
| 398 |
-
value=["π₯ Clinical models", "Generic models"],
|
| 399 |
-
interactive=True,
|
| 400 |
-
elem_id=f"filter-columns-domain-{subset}",
|
| 401 |
-
)
|
| 402 |
-
filter_columns_size = gr.CheckboxGroup(
|
| 403 |
-
label="Model sizes (in billions of parameters)",
|
| 404 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
| 405 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
| 406 |
-
interactive=True,
|
| 407 |
-
elem_id=f"filter-columns-size-{subset}",
|
| 408 |
-
)
|
| 409 |
-
|
| 410 |
-
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset=subset)
|
| 411 |
-
|
| 412 |
-
leaderboard_table = gr.Dataframe(
|
| 413 |
-
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 414 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 415 |
-
datatype=TYPES,
|
| 416 |
-
elem_id=f"leaderboard-table-{subset}",
|
| 417 |
-
interactive=False,
|
| 418 |
-
visible=True,
|
| 419 |
)
|
| 420 |
-
|
| 421 |
-
hidden_leaderboard_table_for_search = gr.Dataframe(
|
| 422 |
-
value=datasets_original_df[OPEN_ENDED_COLS],
|
| 423 |
-
headers=OPEN_ENDED_COLS,
|
| 424 |
-
datatype=TYPES,
|
| 425 |
-
visible=False,
|
| 426 |
-
)
|
| 427 |
-
|
| 428 |
-
search_bar.submit(
|
| 429 |
-
update_table,
|
| 430 |
-
[
|
| 431 |
-
hidden_leaderboard_table_for_search,
|
| 432 |
-
shown_columns,
|
| 433 |
-
search_bar,
|
| 434 |
-
# filter_columns_type,
|
| 435 |
-
filter_domain_specific,
|
| 436 |
-
filter_columns_size
|
| 437 |
-
],
|
| 438 |
-
leaderboard_table,
|
| 439 |
-
)
|
| 440 |
-
|
| 441 |
-
for selector in [
|
| 442 |
-
shown_columns,
|
| 443 |
-
# filter_columns_type,
|
| 444 |
-
filter_domain_specific,
|
| 445 |
-
filter_columns_size,
|
| 446 |
-
]:
|
| 447 |
-
selector.change(
|
| 448 |
-
update_table,
|
| 449 |
-
[
|
| 450 |
-
hidden_leaderboard_table_for_search,
|
| 451 |
-
shown_columns,
|
| 452 |
-
search_bar,
|
| 453 |
-
# filter_columns_type,
|
| 454 |
-
filter_domain_specific,
|
| 455 |
-
filter_columns_size
|
| 456 |
-
],
|
| 457 |
-
leaderboard_table,
|
| 458 |
-
queue=True,
|
| 459 |
-
)
|
| 460 |
-
|
| 461 |
with gr.Accordion("π¬ Generation templates", open=False):
|
| 462 |
with gr.Accordion("Response generation", open=False):
|
| 463 |
render_generation_templates(task="open_ended", generation_type="response_generation")
|
| 464 |
with gr.Accordion("Scoring Rubric", open=False):
|
| 465 |
render_generation_templates(task="open_ended", generation_type="scoring_rubric")
|
| 466 |
-
|
| 467 |
with gr.TabItem("π
Medical Summarization", elem_id="llm-benchmark-tab-table", id=2):
|
| 468 |
gr.Markdown(CROSS_EVALUATION_METRICS, elem_classes="markdown-text")
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 474 |
-
show_label=False,
|
| 475 |
-
elem_id="search-bar",
|
| 476 |
-
)
|
| 477 |
-
with gr.Row():
|
| 478 |
-
shown_columns = gr.CheckboxGroup(
|
| 479 |
-
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)],
|
| 480 |
-
value=[
|
| 481 |
-
c.name
|
| 482 |
-
for c in fields(AutoEvalColumn)
|
| 483 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)
|
| 484 |
-
],
|
| 485 |
-
label="Select columns to show",
|
| 486 |
-
elem_id="column-select",
|
| 487 |
-
interactive=True,
|
| 488 |
-
)
|
| 489 |
-
# with gr.Row():
|
| 490 |
-
# deleted_models_visibility = gr.Checkbox(
|
| 491 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 492 |
-
# )
|
| 493 |
-
with gr.Column(min_width=320):
|
| 494 |
-
# with gr.Box(elem_id="box-filter"):
|
| 495 |
-
# filter_columns_type = gr.CheckboxGroup(
|
| 496 |
-
# label="Model Types",
|
| 497 |
-
# choices=[t.to_str() for t in ModelType],
|
| 498 |
-
# value=[t.to_str() for t in ModelType],
|
| 499 |
-
# interactive=True,
|
| 500 |
-
# elem_id="filter-columns-type",
|
| 501 |
-
# )
|
| 502 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
| 503 |
-
# label="Architecture Types",
|
| 504 |
-
# choices=[i.value.name for i in ModelArch],
|
| 505 |
-
# value=[i.value.name for i in ModelArch],
|
| 506 |
-
# interactive=True,
|
| 507 |
-
# elem_id="filter-columns-architecture",
|
| 508 |
-
# )
|
| 509 |
-
filter_domain_specific = gr.CheckboxGroup(
|
| 510 |
-
label="Domain Specificity",
|
| 511 |
-
choices=["π₯ Clinical models", "Generic models"],
|
| 512 |
-
value=["π₯ Clinical models", "Generic models"],
|
| 513 |
-
interactive=True,
|
| 514 |
-
elem_id="filter-columns-type",
|
| 515 |
-
)
|
| 516 |
-
filter_columns_size = gr.CheckboxGroup(
|
| 517 |
-
label="Model sizes (in billions of parameters)",
|
| 518 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
| 519 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
| 520 |
-
interactive=True,
|
| 521 |
-
elem_id="filter-columns-size",
|
| 522 |
-
)
|
| 523 |
-
|
| 524 |
-
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="medical_summarization")
|
| 525 |
-
|
| 526 |
-
leaderboard_table = gr.components.Dataframe(
|
| 527 |
-
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 528 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 529 |
-
datatype=TYPES,
|
| 530 |
-
elem_id="leaderboard-table",
|
| 531 |
-
interactive=False,
|
| 532 |
-
visible=True,
|
| 533 |
-
)
|
| 534 |
-
|
| 535 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 536 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 537 |
-
value=datasets_original_df[MEDICAL_SUMMARIZATION_COLS],
|
| 538 |
-
headers=MEDICAL_SUMMARIZATION_COLS,
|
| 539 |
-
datatype=TYPES,
|
| 540 |
-
visible=False,
|
| 541 |
)
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
search_bar.submit(
|
| 545 |
-
update_table,
|
| 546 |
-
[
|
| 547 |
-
hidden_leaderboard_table_for_search,
|
| 548 |
-
shown_columns,
|
| 549 |
-
search_bar,
|
| 550 |
-
# filter_columns_type,
|
| 551 |
-
filter_domain_specific,
|
| 552 |
-
filter_columns_size
|
| 553 |
-
# filter_columns_architecture
|
| 554 |
-
],
|
| 555 |
-
leaderboard_table,
|
| 556 |
-
)
|
| 557 |
-
for selector in [
|
| 558 |
-
shown_columns,
|
| 559 |
-
# filter_columns_type,
|
| 560 |
-
filter_domain_specific,
|
| 561 |
-
filter_columns_size,
|
| 562 |
-
# deleted_models_visibility,
|
| 563 |
-
]:
|
| 564 |
-
selector.change(
|
| 565 |
-
update_table,
|
| 566 |
-
[
|
| 567 |
-
hidden_leaderboard_table_for_search,
|
| 568 |
-
shown_columns,
|
| 569 |
-
search_bar,
|
| 570 |
-
# filter_columns_type,
|
| 571 |
-
filter_domain_specific,
|
| 572 |
-
filter_columns_size
|
| 573 |
-
],
|
| 574 |
-
leaderboard_table,
|
| 575 |
-
queue=True,
|
| 576 |
-
)
|
| 577 |
with gr.Accordion("π¬ Generation templates", open=False):
|
| 578 |
with gr.Accordion("Response generation", open=False):
|
| 579 |
-
|
| 580 |
with gr.Accordion("Question generation", open=False):
|
| 581 |
-
|
| 582 |
with gr.Accordion("Cross Examination", open=False):
|
| 583 |
-
|
| 584 |
-
|
| 585 |
with gr.TabItem("π
Note generation", elem_id="llm-benchmark-tab-table", id=3):
|
| 586 |
gr.Markdown(NOTE_GENERATION_METRICS, elem_classes="markdown-text")
|
| 587 |
-
with gr.Tabs(elem_classes="tab-buttons2")
|
| 588 |
-
with gr.TabItem("ACI Bench",
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 594 |
-
show_label=False,
|
| 595 |
-
elem_id="search-bar",
|
| 596 |
-
)
|
| 597 |
-
with gr.Row():
|
| 598 |
-
shown_columns = gr.CheckboxGroup(
|
| 599 |
-
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)],
|
| 600 |
-
value=[
|
| 601 |
-
c.name
|
| 602 |
-
for c in fields(AutoEvalColumn)
|
| 603 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)
|
| 604 |
-
],
|
| 605 |
-
label="Select columns to show",
|
| 606 |
-
elem_id="column-select",
|
| 607 |
-
interactive=True,
|
| 608 |
-
)
|
| 609 |
-
# with gr.Row():
|
| 610 |
-
# deleted_models_visibility = gr.Checkbox(
|
| 611 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 612 |
-
# )
|
| 613 |
-
with gr.Column(min_width=320):
|
| 614 |
-
# with gr.Box(elem_id="box-filter"):
|
| 615 |
-
# filter_columns_type = gr.CheckboxGroup(
|
| 616 |
-
# label="Model Types",
|
| 617 |
-
# choices=[t.to_str() for t in ModelType],
|
| 618 |
-
# value=[t.to_str() for t in ModelType],
|
| 619 |
-
# interactive=True,
|
| 620 |
-
# elem_id="filter-columns-type",
|
| 621 |
-
# )
|
| 622 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
| 623 |
-
# label="Architecture Types",
|
| 624 |
-
# choices=[i.value.name for i in ModelArch],
|
| 625 |
-
# value=[i.value.name for i in ModelArch],
|
| 626 |
-
# interactive=True,
|
| 627 |
-
# elem_id="filter-columns-architecture",
|
| 628 |
-
# )
|
| 629 |
-
filter_domain_specific = gr.CheckboxGroup(
|
| 630 |
-
label="Domain Specificity",
|
| 631 |
-
choices=["π₯ Clinical models", "Generic models"],
|
| 632 |
-
value=["π₯ Clinical models", "Generic models"],
|
| 633 |
-
interactive=True,
|
| 634 |
-
elem_id="filter-columns-type",
|
| 635 |
-
)
|
| 636 |
-
filter_columns_size = gr.CheckboxGroup(
|
| 637 |
-
label="Model sizes (in billions of parameters)",
|
| 638 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
| 639 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
| 640 |
-
interactive=True,
|
| 641 |
-
elem_id="filter-columns-size",
|
| 642 |
-
)
|
| 643 |
-
|
| 644 |
-
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="aci")
|
| 645 |
-
|
| 646 |
-
leaderboard_table = gr.components.Dataframe(
|
| 647 |
-
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 648 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 649 |
-
datatype=TYPES,
|
| 650 |
-
elem_id="leaderboard-table",
|
| 651 |
-
interactive=False,
|
| 652 |
-
visible=True,
|
| 653 |
-
)
|
| 654 |
-
|
| 655 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 656 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 657 |
-
value=datasets_original_df[ACI_COLS],
|
| 658 |
-
headers=ACI_COLS,
|
| 659 |
-
datatype=TYPES,
|
| 660 |
-
visible=False,
|
| 661 |
-
)
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
search_bar.submit(
|
| 665 |
-
update_table,
|
| 666 |
-
[
|
| 667 |
-
hidden_leaderboard_table_for_search,
|
| 668 |
-
shown_columns,
|
| 669 |
-
search_bar,
|
| 670 |
-
# filter_columns_type,
|
| 671 |
-
filter_domain_specific,
|
| 672 |
-
filter_columns_size
|
| 673 |
-
# filter_columns_architecture
|
| 674 |
-
],
|
| 675 |
-
leaderboard_table,
|
| 676 |
-
)
|
| 677 |
-
for selector in [
|
| 678 |
-
shown_columns,
|
| 679 |
-
# filter_columns_type,
|
| 680 |
-
filter_domain_specific,
|
| 681 |
-
filter_columns_size,
|
| 682 |
-
# deleted_models_visibility,
|
| 683 |
-
]:
|
| 684 |
-
selector.change(
|
| 685 |
-
update_table,
|
| 686 |
-
[
|
| 687 |
-
hidden_leaderboard_table_for_search,
|
| 688 |
-
shown_columns,
|
| 689 |
-
search_bar,
|
| 690 |
-
# filter_columns_type,
|
| 691 |
-
filter_domain_specific,
|
| 692 |
-
filter_columns_size
|
| 693 |
-
],
|
| 694 |
-
leaderboard_table,
|
| 695 |
-
queue=True,
|
| 696 |
-
)
|
| 697 |
-
with gr.TabItem("SOAP Notes", elem_id="llm-benchmark-tab-table2", id=1):
|
| 698 |
-
with gr.Row():
|
| 699 |
-
with gr.Column():
|
| 700 |
-
with gr.Row():
|
| 701 |
-
search_bar = gr.Textbox(
|
| 702 |
-
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 703 |
-
show_label=False,
|
| 704 |
-
elem_id="search-bar",
|
| 705 |
-
)
|
| 706 |
-
with gr.Row():
|
| 707 |
-
shown_columns = gr.CheckboxGroup(
|
| 708 |
-
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)],
|
| 709 |
-
value=[
|
| 710 |
-
c.name
|
| 711 |
-
for c in fields(AutoEvalColumn)
|
| 712 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)
|
| 713 |
-
],
|
| 714 |
-
label="Select columns to show",
|
| 715 |
-
elem_id="column-select",
|
| 716 |
-
interactive=True,
|
| 717 |
-
)
|
| 718 |
-
# with gr.Row():
|
| 719 |
-
# deleted_models_visibility = gr.Checkbox(
|
| 720 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 721 |
-
# )
|
| 722 |
-
with gr.Column(min_width=320):
|
| 723 |
-
# with gr.Box(elem_id="box-filter"):
|
| 724 |
-
# filter_columns_type = gr.CheckboxGroup(
|
| 725 |
-
# label="Model Types",
|
| 726 |
-
# choices=[t.to_str() for t in ModelType],
|
| 727 |
-
# value=[t.to_str() for t in ModelType],
|
| 728 |
-
# interactive=True,
|
| 729 |
-
# elem_id="filter-columns-type",
|
| 730 |
-
# )
|
| 731 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
| 732 |
-
# label="Architecture Types",
|
| 733 |
-
# choices=[i.value.name for i in ModelArch],
|
| 734 |
-
# value=[i.value.name for i in ModelArch],
|
| 735 |
-
# interactive=True,
|
| 736 |
-
# elem_id="filter-columns-architecture",
|
| 737 |
-
# )
|
| 738 |
-
filter_domain_specific = gr.CheckboxGroup(
|
| 739 |
-
label="Domain Specificity",
|
| 740 |
-
choices=["π₯ Clinical models", "Generic models"],
|
| 741 |
-
value=["π₯ Clinical models", "Generic models"],
|
| 742 |
-
interactive=True,
|
| 743 |
-
elem_id="filter-columns-type",
|
| 744 |
-
)
|
| 745 |
-
filter_columns_size = gr.CheckboxGroup(
|
| 746 |
-
label="Model sizes (in billions of parameters)",
|
| 747 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
| 748 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
| 749 |
-
interactive=True,
|
| 750 |
-
elem_id="filter-columns-size",
|
| 751 |
-
)
|
| 752 |
-
|
| 753 |
-
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="soap")
|
| 754 |
-
|
| 755 |
-
leaderboard_table = gr.components.Dataframe(
|
| 756 |
-
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 757 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 758 |
-
datatype=TYPES,
|
| 759 |
-
elem_id="leaderboard-table",
|
| 760 |
-
interactive=False,
|
| 761 |
-
visible=True,
|
| 762 |
-
)
|
| 763 |
-
|
| 764 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 765 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 766 |
-
value=datasets_original_df[SOAP_COLS],
|
| 767 |
-
headers=SOAP_COLS,
|
| 768 |
-
datatype=TYPES,
|
| 769 |
-
visible=False,
|
| 770 |
)
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
[
|
| 776 |
-
hidden_leaderboard_table_for_search,
|
| 777 |
-
shown_columns,
|
| 778 |
-
search_bar,
|
| 779 |
-
# filter_columns_type,
|
| 780 |
-
filter_domain_specific,
|
| 781 |
-
filter_columns_size
|
| 782 |
-
# filter_columns_architecture
|
| 783 |
-
],
|
| 784 |
-
leaderboard_table,
|
| 785 |
)
|
| 786 |
-
|
| 787 |
-
shown_columns,
|
| 788 |
-
# filter_columns_type,
|
| 789 |
-
filter_domain_specific,
|
| 790 |
-
filter_columns_size,
|
| 791 |
-
# deleted_models_visibility,
|
| 792 |
-
]:
|
| 793 |
-
selector.change(
|
| 794 |
-
update_table,
|
| 795 |
-
[
|
| 796 |
-
hidden_leaderboard_table_for_search,
|
| 797 |
-
shown_columns,
|
| 798 |
-
search_bar,
|
| 799 |
-
# filter_columns_type,
|
| 800 |
-
filter_domain_specific,
|
| 801 |
-
filter_columns_size
|
| 802 |
-
],
|
| 803 |
-
leaderboard_table,
|
| 804 |
-
queue=True,
|
| 805 |
-
)
|
| 806 |
-
with gr.Accordion("π¬ Generation templates", open=False):
|
| 807 |
-
with gr.Accordion("ACI-Bench Response generation", open=False):
|
| 808 |
-
system_prompt, user_prompt = render_generation_templates(task="aci", generation_type="response_generation")
|
| 809 |
-
with gr.Accordion("SOAP Notes Response generation", open=False):
|
| 810 |
-
system_prompt, user_prompt = render_generation_templates(task="soap", generation_type="response_generation")
|
| 811 |
-
with gr.Accordion("Question generation", open=False):
|
| 812 |
-
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
|
| 813 |
-
with gr.Accordion("Cross Examination", open=False):
|
| 814 |
-
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")
|
| 815 |
|
| 816 |
with gr.TabItem("π
HealthBench", elem_id="llm-benchmark-tab-table", id=4):
|
| 817 |
gr.Markdown(HEALTHBENCH_METRICS, elem_classes="markdown-text")
|
| 818 |
-
with gr.Tabs(elem_classes="tab-buttons2")
|
| 819 |
-
with gr.TabItem("HealthBench",
|
| 820 |
-
|
| 821 |
-
|
| 822 |
-
|
| 823 |
-
|
| 824 |
-
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 825 |
-
show_label=False,
|
| 826 |
-
elem_id="search-bar",
|
| 827 |
-
)
|
| 828 |
-
with gr.Row():
|
| 829 |
-
shown_columns = gr.CheckboxGroup(
|
| 830 |
-
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.healthbench_col)],
|
| 831 |
-
value=[
|
| 832 |
-
c.name
|
| 833 |
-
for c in fields(AutoEvalColumn)
|
| 834 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.healthbench_col)
|
| 835 |
-
],
|
| 836 |
-
label="Select columns to show",
|
| 837 |
-
elem_id="column-select",
|
| 838 |
-
interactive=True,
|
| 839 |
-
)
|
| 840 |
-
# with gr.Row():
|
| 841 |
-
# deleted_models_visibility = gr.Checkbox(
|
| 842 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 843 |
-
# )
|
| 844 |
-
with gr.Column(min_width=320):
|
| 845 |
-
# with gr.Box(elem_id="box-filter"):
|
| 846 |
-
# filter_columns_type = gr.CheckboxGroup(
|
| 847 |
-
# label="Model Types",
|
| 848 |
-
# choices=[t.to_str() for t in ModelType],
|
| 849 |
-
# value=[t.to_str() for t in ModelType],
|
| 850 |
-
# interactive=True,
|
| 851 |
-
# elem_id="filter-columns-type",
|
| 852 |
-
# )
|
| 853 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
| 854 |
-
# label="Architecture Types",
|
| 855 |
-
# choices=[i.value.name for i in ModelArch],
|
| 856 |
-
# value=[i.value.name for i in ModelArch],
|
| 857 |
-
# interactive=True,
|
| 858 |
-
# elem_id="filter-columns-architecture",
|
| 859 |
-
# )
|
| 860 |
-
filter_domain_specific = gr.CheckboxGroup(
|
| 861 |
-
label="Domain Specificity",
|
| 862 |
-
choices=["π₯ Clinical models", "Generic models"],
|
| 863 |
-
value=["π₯ Clinical models", "Generic models"],
|
| 864 |
-
interactive=True,
|
| 865 |
-
elem_id="filter-columns-type",
|
| 866 |
-
)
|
| 867 |
-
filter_columns_size = gr.CheckboxGroup(
|
| 868 |
-
label="Model sizes (in billions of parameters)",
|
| 869 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
| 870 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
| 871 |
-
interactive=True,
|
| 872 |
-
elem_id="filter-columns-size",
|
| 873 |
-
)
|
| 874 |
-
|
| 875 |
-
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="healthbench")
|
| 876 |
-
|
| 877 |
-
leaderboard_table = gr.components.Dataframe(
|
| 878 |
-
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 879 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 880 |
-
datatype=TYPES,
|
| 881 |
-
elem_id="leaderboard-table",
|
| 882 |
-
interactive=False,
|
| 883 |
-
visible=True,
|
| 884 |
-
)
|
| 885 |
-
|
| 886 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 887 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 888 |
-
value=datasets_original_df[HEALTHBENCH_COLS],
|
| 889 |
-
headers=HEALTHBENCH_COLS,
|
| 890 |
-
datatype=TYPES,
|
| 891 |
-
visible=False,
|
| 892 |
-
)
|
| 893 |
-
|
| 894 |
-
|
| 895 |
-
search_bar.submit(
|
| 896 |
-
update_table,
|
| 897 |
-
[
|
| 898 |
-
hidden_leaderboard_table_for_search,
|
| 899 |
-
shown_columns,
|
| 900 |
-
search_bar,
|
| 901 |
-
# filter_columns_type,
|
| 902 |
-
filter_domain_specific,
|
| 903 |
-
filter_columns_size
|
| 904 |
-
# filter_columns_architecture
|
| 905 |
-
],
|
| 906 |
-
leaderboard_table,
|
| 907 |
-
)
|
| 908 |
-
for selector in [
|
| 909 |
-
shown_columns,
|
| 910 |
-
# filter_columns_type,
|
| 911 |
-
filter_domain_specific,
|
| 912 |
-
filter_columns_size,
|
| 913 |
-
# deleted_models_visibility,
|
| 914 |
-
]:
|
| 915 |
-
selector.change(
|
| 916 |
-
update_table,
|
| 917 |
-
[
|
| 918 |
-
hidden_leaderboard_table_for_search,
|
| 919 |
-
shown_columns,
|
| 920 |
-
search_bar,
|
| 921 |
-
# filter_columns_type,
|
| 922 |
-
filter_domain_specific,
|
| 923 |
-
filter_columns_size
|
| 924 |
-
],
|
| 925 |
-
leaderboard_table,
|
| 926 |
-
queue=True,
|
| 927 |
-
)
|
| 928 |
-
with gr.TabItem("HealthBench-Hard", elem_id="llm-benchmark-tab-table3", id=1):
|
| 929 |
-
with gr.Row():
|
| 930 |
-
with gr.Column():
|
| 931 |
-
with gr.Row():
|
| 932 |
-
search_bar = gr.Textbox(
|
| 933 |
-
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 934 |
-
show_label=False,
|
| 935 |
-
elem_id="search-bar",
|
| 936 |
-
)
|
| 937 |
-
with gr.Row():
|
| 938 |
-
shown_columns = gr.CheckboxGroup(
|
| 939 |
-
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.healthbench_hard_col)],
|
| 940 |
-
value=[
|
| 941 |
-
c.name
|
| 942 |
-
for c in fields(AutoEvalColumn)
|
| 943 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.healthbench_hard_col)
|
| 944 |
-
],
|
| 945 |
-
label="Select columns to show",
|
| 946 |
-
elem_id="column-select",
|
| 947 |
-
interactive=True,
|
| 948 |
-
)
|
| 949 |
-
# with gr.Row():
|
| 950 |
-
# deleted_models_visibility = gr.Checkbox(
|
| 951 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 952 |
-
# )
|
| 953 |
-
with gr.Column(min_width=320):
|
| 954 |
-
# with gr.Box(elem_id="box-filter"):
|
| 955 |
-
# filter_columns_type = gr.CheckboxGroup(
|
| 956 |
-
# label="Model Types",
|
| 957 |
-
# choices=[t.to_str() for t in ModelType],
|
| 958 |
-
# value=[t.to_str() for t in ModelType],
|
| 959 |
-
# interactive=True,
|
| 960 |
-
# elem_id="filter-columns-type",
|
| 961 |
-
# )
|
| 962 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
| 963 |
-
# label="Architecture Types",
|
| 964 |
-
# choices=[i.value.name for i in ModelArch],
|
| 965 |
-
# value=[i.value.name for i in ModelArch],
|
| 966 |
-
# interactive=True,
|
| 967 |
-
# elem_id="filter-columns-architecture",
|
| 968 |
-
# )
|
| 969 |
-
filter_domain_specific = gr.CheckboxGroup(
|
| 970 |
-
label="Domain Specificity",
|
| 971 |
-
choices=["π₯ Clinical models", "Generic models"],
|
| 972 |
-
value=["π₯ Clinical models", "Generic models"],
|
| 973 |
-
interactive=True,
|
| 974 |
-
elem_id="filter-columns-type",
|
| 975 |
-
)
|
| 976 |
-
filter_columns_size = gr.CheckboxGroup(
|
| 977 |
-
label="Model sizes (in billions of parameters)",
|
| 978 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
| 979 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
| 980 |
-
interactive=True,
|
| 981 |
-
elem_id="filter-columns-size",
|
| 982 |
-
)
|
| 983 |
-
|
| 984 |
-
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="healthbench_hard")
|
| 985 |
-
|
| 986 |
-
leaderboard_table = gr.components.Dataframe(
|
| 987 |
-
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 988 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 989 |
-
datatype=TYPES,
|
| 990 |
-
elem_id="leaderboard-table",
|
| 991 |
-
interactive=False,
|
| 992 |
-
visible=True,
|
| 993 |
-
)
|
| 994 |
-
|
| 995 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 996 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 997 |
-
value=datasets_original_df[HEALTHBENCH_HARD_COLS],
|
| 998 |
-
headers=HEALTHBENCH_HARD_COLS,
|
| 999 |
-
datatype=TYPES,
|
| 1000 |
-
visible=False,
|
| 1001 |
)
|
| 1002 |
-
|
| 1003 |
-
|
| 1004 |
-
|
| 1005 |
-
|
| 1006 |
-
[
|
| 1007 |
-
hidden_leaderboard_table_for_search,
|
| 1008 |
-
shown_columns,
|
| 1009 |
-
search_bar,
|
| 1010 |
-
# filter_columns_type,
|
| 1011 |
-
filter_domain_specific,
|
| 1012 |
-
filter_columns_size
|
| 1013 |
-
# filter_columns_architecture
|
| 1014 |
-
],
|
| 1015 |
-
leaderboard_table,
|
| 1016 |
)
|
| 1017 |
-
for selector in [
|
| 1018 |
-
shown_columns,
|
| 1019 |
-
# filter_columns_type,
|
| 1020 |
-
filter_domain_specific,
|
| 1021 |
-
filter_columns_size,
|
| 1022 |
-
# deleted_models_visibility,
|
| 1023 |
-
]:
|
| 1024 |
-
selector.change(
|
| 1025 |
-
update_table,
|
| 1026 |
-
[
|
| 1027 |
-
hidden_leaderboard_table_for_search,
|
| 1028 |
-
shown_columns,
|
| 1029 |
-
search_bar,
|
| 1030 |
-
# filter_columns_type,
|
| 1031 |
-
filter_domain_specific,
|
| 1032 |
-
filter_columns_size
|
| 1033 |
-
],
|
| 1034 |
-
leaderboard_table,
|
| 1035 |
-
queue=True,
|
| 1036 |
-
)
|
| 1037 |
|
| 1038 |
with gr.TabItem("π
Med Safety", elem_id="llm-benchmark-tab-table", id=5):
|
| 1039 |
-
|
| 1040 |
-
|
| 1041 |
-
|
| 1042 |
-
|
| 1043 |
-
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 1044 |
-
show_label=False,
|
| 1045 |
-
elem_id="search-bar",
|
| 1046 |
-
)
|
| 1047 |
-
with gr.Row():
|
| 1048 |
-
shown_columns = gr.CheckboxGroup(
|
| 1049 |
-
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)],
|
| 1050 |
-
value=[
|
| 1051 |
-
c.name
|
| 1052 |
-
for c in fields(AutoEvalColumn)
|
| 1053 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)
|
| 1054 |
-
],
|
| 1055 |
-
label="Select columns to show",
|
| 1056 |
-
elem_id="column-select",
|
| 1057 |
-
interactive=True,
|
| 1058 |
-
)
|
| 1059 |
-
# with gr.Row():
|
| 1060 |
-
# deleted_models_visibility = gr.Checkbox(
|
| 1061 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 1062 |
-
# )
|
| 1063 |
-
with gr.Column(min_width=320):
|
| 1064 |
-
# with gr.Box(elem_id="box-filter"):
|
| 1065 |
-
# filter_columns_type = gr.CheckboxGroup(
|
| 1066 |
-
# label="Model Types",
|
| 1067 |
-
# choices=[t.to_str() for t in ModelType],
|
| 1068 |
-
# value=[t.to_str() for t in ModelType],
|
| 1069 |
-
# interactive=True,
|
| 1070 |
-
# elem_id="filter-columns-type",
|
| 1071 |
-
# )
|
| 1072 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
| 1073 |
-
# label="Architecture Types",
|
| 1074 |
-
# choices=[i.value.name for i in ModelArch],
|
| 1075 |
-
# value=[i.value.name for i in ModelArch],
|
| 1076 |
-
# interactive=True,
|
| 1077 |
-
# elem_id="filter-columns-architecture",
|
| 1078 |
-
# )
|
| 1079 |
-
filter_domain_specific = gr.CheckboxGroup(
|
| 1080 |
-
label="Domain Specificity",
|
| 1081 |
-
choices=["π₯ Clinical models", "Generic models"],
|
| 1082 |
-
value=["π₯ Clinical models", "Generic models"],
|
| 1083 |
-
interactive=True,
|
| 1084 |
-
elem_id="filter-columns-type",
|
| 1085 |
-
)
|
| 1086 |
-
filter_columns_size = gr.CheckboxGroup(
|
| 1087 |
-
label="Model sizes (in billions of parameters)",
|
| 1088 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
| 1089 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
| 1090 |
-
interactive=True,
|
| 1091 |
-
elem_id="filter-columns-size",
|
| 1092 |
-
)
|
| 1093 |
-
|
| 1094 |
-
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="med_safety")
|
| 1095 |
-
|
| 1096 |
-
leaderboard_table = gr.components.Dataframe(
|
| 1097 |
-
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 1098 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 1099 |
-
datatype=TYPES,
|
| 1100 |
-
elem_id="leaderboard-table",
|
| 1101 |
-
interactive=False,
|
| 1102 |
-
visible=True,
|
| 1103 |
)
|
| 1104 |
-
|
| 1105 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 1106 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 1107 |
-
value=datasets_original_df[MED_SAFETY_COLS],
|
| 1108 |
-
headers=MED_SAFETY_COLS,
|
| 1109 |
-
datatype=TYPES,
|
| 1110 |
-
visible=False,
|
| 1111 |
-
)
|
| 1112 |
-
|
| 1113 |
-
|
| 1114 |
-
search_bar.submit(
|
| 1115 |
-
update_table,
|
| 1116 |
-
[
|
| 1117 |
-
hidden_leaderboard_table_for_search,
|
| 1118 |
-
shown_columns,
|
| 1119 |
-
search_bar,
|
| 1120 |
-
# filter_columns_type,
|
| 1121 |
-
filter_domain_specific,
|
| 1122 |
-
filter_columns_size
|
| 1123 |
-
# filter_columns_architecture
|
| 1124 |
-
],
|
| 1125 |
-
leaderboard_table,
|
| 1126 |
-
)
|
| 1127 |
-
for selector in [
|
| 1128 |
-
shown_columns,
|
| 1129 |
-
# filter_columns_type,
|
| 1130 |
-
filter_domain_specific,
|
| 1131 |
-
filter_columns_size,
|
| 1132 |
-
# deleted_models_visibility,
|
| 1133 |
-
]:
|
| 1134 |
-
selector.change(
|
| 1135 |
-
update_table,
|
| 1136 |
-
[
|
| 1137 |
-
hidden_leaderboard_table_for_search,
|
| 1138 |
-
shown_columns,
|
| 1139 |
-
search_bar,
|
| 1140 |
-
# filter_columns_type,
|
| 1141 |
-
filter_domain_specific,
|
| 1142 |
-
filter_columns_size
|
| 1143 |
-
],
|
| 1144 |
-
leaderboard_table,
|
| 1145 |
-
queue=True,
|
| 1146 |
-
)
|
| 1147 |
with gr.Accordion("π¬ Generation templates", open=False):
|
| 1148 |
with gr.Accordion("Response generation", open=False):
|
| 1149 |
-
|
| 1150 |
with gr.Accordion("Scoring Rubric", open=False):
|
| 1151 |
-
|
| 1152 |
-
|
| 1153 |
with gr.TabItem("π
Closed Ended Evaluation", elem_id="llm-benchmark-tab-closed", id=6):
|
| 1154 |
-
with gr.Tabs(elem_classes="tab-buttons2")
|
| 1155 |
-
|
| 1156 |
-
|
| 1157 |
-
|
| 1158 |
-
|
| 1159 |
-
|
| 1160 |
-
search_bar = gr.Textbox(
|
| 1161 |
-
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 1162 |
-
show_label=False,
|
| 1163 |
-
elem_id="search-bar-closed-english",
|
| 1164 |
-
)
|
| 1165 |
-
with gr.Row():
|
| 1166 |
-
shown_columns = gr.CheckboxGroup(
|
| 1167 |
-
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)],
|
| 1168 |
-
value=[
|
| 1169 |
-
c.name
|
| 1170 |
-
for c in fields(AutoEvalColumn)
|
| 1171 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)
|
| 1172 |
-
],
|
| 1173 |
-
label="Select columns to show",
|
| 1174 |
-
elem_id="column-select-closed-english",
|
| 1175 |
-
interactive=True,
|
| 1176 |
-
)
|
| 1177 |
-
with gr.Column(min_width=320):
|
| 1178 |
-
# filter_columns_type = gr.CheckboxGroup(
|
| 1179 |
-
# label="Model Types",
|
| 1180 |
-
# choices=[t.to_str() for t in ModelType],
|
| 1181 |
-
# value=[t.to_str() for t in ModelType],
|
| 1182 |
-
# interactive=True,
|
| 1183 |
-
# elem_id="filter-columns-type-closed-english",
|
| 1184 |
-
# )
|
| 1185 |
-
filter_domain_specific = gr.CheckboxGroup(
|
| 1186 |
-
label="Domain Specificity",
|
| 1187 |
-
choices=["π₯ Clinical models", "Generic models"],
|
| 1188 |
-
value=["π₯ Clinical models", "Generic models"],
|
| 1189 |
-
interactive=True,
|
| 1190 |
-
elem_id="filter-domain-specific-closed-english",
|
| 1191 |
-
)
|
| 1192 |
-
filter_columns_size = gr.CheckboxGroup(
|
| 1193 |
-
label="Model sizes (in billions of parameters)",
|
| 1194 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
| 1195 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
| 1196 |
-
interactive=True,
|
| 1197 |
-
elem_id="filter-columns-size-closed-english",
|
| 1198 |
-
)
|
| 1199 |
-
|
| 1200 |
-
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="datasets")
|
| 1201 |
-
leaderboard_table = gr.components.Dataframe(
|
| 1202 |
-
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 1203 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 1204 |
-
datatype=TYPES,
|
| 1205 |
-
elem_id="leaderboard-table-english",
|
| 1206 |
-
interactive=False,
|
| 1207 |
-
visible=True,
|
| 1208 |
-
)
|
| 1209 |
-
|
| 1210 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 1211 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 1212 |
-
value=datasets_original_df[DATASET_COLS],
|
| 1213 |
-
headers=DATASET_COLS,
|
| 1214 |
-
datatype=TYPES,
|
| 1215 |
-
visible=False,
|
| 1216 |
)
|
| 1217 |
-
|
| 1218 |
-
|
| 1219 |
-
|
| 1220 |
-
|
| 1221 |
-
|
| 1222 |
-
|
| 1223 |
-
search_bar,
|
| 1224 |
-
# filter_columns_type,
|
| 1225 |
-
filter_domain_specific,
|
| 1226 |
-
filter_columns_size
|
| 1227 |
-
],
|
| 1228 |
-
leaderboard_table,
|
| 1229 |
)
|
| 1230 |
-
|
| 1231 |
-
for selector in [
|
| 1232 |
-
shown_columns,
|
| 1233 |
-
# filter_columns_type,
|
| 1234 |
-
filter_domain_specific,
|
| 1235 |
-
filter_columns_size,
|
| 1236 |
-
]:
|
| 1237 |
-
selector.change(
|
| 1238 |
-
update_table,
|
| 1239 |
-
[
|
| 1240 |
-
hidden_leaderboard_table_for_search,
|
| 1241 |
-
shown_columns,
|
| 1242 |
-
search_bar,
|
| 1243 |
-
# filter_columns_type,
|
| 1244 |
-
filter_domain_specific,
|
| 1245 |
-
filter_columns_size
|
| 1246 |
-
],
|
| 1247 |
-
leaderboard_table,
|
| 1248 |
-
queue=True,
|
| 1249 |
-
)
|
| 1250 |
-
|
| 1251 |
-
#MULTILINGUAL TAB - Same level as English tab
|
| 1252 |
-
with gr.TabItem("π Multilingual", elem_id="llm-benchmark-tab-table9", id=1):
|
| 1253 |
-
with gr.Row():
|
| 1254 |
-
gr.Markdown("π **Dataset Information:** This tab uses the Global MMLU dataset filtering only the subcategory: medical (10.7%)")
|
| 1255 |
-
|
| 1256 |
-
with gr.Row():
|
| 1257 |
-
with gr.Column():
|
| 1258 |
-
with gr.Row():
|
| 1259 |
-
search_bar = gr.Textbox(
|
| 1260 |
-
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 1261 |
-
show_label=False,
|
| 1262 |
-
elem_id="search-bar",
|
| 1263 |
-
)
|
| 1264 |
-
|
| 1265 |
-
with gr.Row():
|
| 1266 |
-
shown_columns = gr.CheckboxGroup(
|
| 1267 |
-
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)],
|
| 1268 |
-
value=[
|
| 1269 |
-
c.name
|
| 1270 |
-
for c in fields(AutoEvalColumn)
|
| 1271 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)
|
| 1272 |
-
],
|
| 1273 |
-
label="Select columns to show",
|
| 1274 |
-
elem_id="column-select",
|
| 1275 |
-
interactive=True,
|
| 1276 |
-
)
|
| 1277 |
-
with gr.Column(min_width=320):
|
| 1278 |
-
# with gr.Box(elem_id="box-filter"):
|
| 1279 |
-
# filter_columns_type = gr.CheckboxGroup(
|
| 1280 |
-
# label="Model Types",
|
| 1281 |
-
# choices=[t.to_str() for t in ModelType],
|
| 1282 |
-
# value=[t.to_str() for t in ModelType],
|
| 1283 |
-
# interactive=True,
|
| 1284 |
-
# elem_id="filter-columns-type",
|
| 1285 |
-
# )
|
| 1286 |
-
filter_domain_specific = gr.CheckboxGroup(
|
| 1287 |
-
label="Domain Specificity",
|
| 1288 |
-
choices=["π₯ Clinical models", "Generic models"],
|
| 1289 |
-
value=["π₯ Clinical models", "Generic models"],
|
| 1290 |
-
interactive=True,
|
| 1291 |
-
elem_id="filter-columns-type",
|
| 1292 |
-
)
|
| 1293 |
-
filter_columns_size = gr.CheckboxGroup(
|
| 1294 |
-
label="Model sizes (in billions of parameters)",
|
| 1295 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
| 1296 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
| 1297 |
-
interactive=True,
|
| 1298 |
-
elem_id="filter-columns-size",
|
| 1299 |
-
)
|
| 1300 |
|
| 1301 |
-
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="closed_ended_multilingual")
|
| 1302 |
-
leaderboard_table = gr.components.Dataframe(
|
| 1303 |
-
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 1304 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 1305 |
-
datatype=TYPES,
|
| 1306 |
-
elem_id="leaderboard-table",
|
| 1307 |
-
interactive=False,
|
| 1308 |
-
visible=True,
|
| 1309 |
-
)
|
| 1310 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 1311 |
-
value=datasets_original_df[ClosedEndedMultilingual_COLS],
|
| 1312 |
-
headers=ClosedEndedMultilingual_COLS,
|
| 1313 |
-
datatype=TYPES,
|
| 1314 |
-
visible=False,
|
| 1315 |
-
)
|
| 1316 |
-
|
| 1317 |
-
search_bar.submit(
|
| 1318 |
-
update_table,
|
| 1319 |
-
[
|
| 1320 |
-
hidden_leaderboard_table_for_search,
|
| 1321 |
-
shown_columns,
|
| 1322 |
-
search_bar,
|
| 1323 |
-
# filter_columns_type,
|
| 1324 |
-
filter_domain_specific,
|
| 1325 |
-
filter_columns_size
|
| 1326 |
-
# filter_columns_architecture
|
| 1327 |
-
],
|
| 1328 |
-
leaderboard_table,
|
| 1329 |
-
)
|
| 1330 |
-
for selector in [
|
| 1331 |
-
shown_columns,
|
| 1332 |
-
# filter_columns_type,
|
| 1333 |
-
filter_domain_specific,
|
| 1334 |
-
# filter_columns_architecture,
|
| 1335 |
-
filter_columns_size,
|
| 1336 |
-
# deleted_models_visibility,
|
| 1337 |
-
]:
|
| 1338 |
-
selector.change(
|
| 1339 |
-
update_table,
|
| 1340 |
-
[
|
| 1341 |
-
hidden_leaderboard_table_for_search,
|
| 1342 |
-
shown_columns,
|
| 1343 |
-
search_bar,
|
| 1344 |
-
# filter_columns_type,
|
| 1345 |
-
filter_domain_specific,
|
| 1346 |
-
filter_columns_size
|
| 1347 |
-
# filter_columns_architecture,
|
| 1348 |
-
],
|
| 1349 |
-
leaderboard_table,
|
| 1350 |
-
queue=True,
|
| 1351 |
-
)
|
| 1352 |
-
|
| 1353 |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=7):
|
| 1354 |
gr.Markdown(LLM_BENCHMARKS_TEXT_1, elem_classes="markdown-text")
|
| 1355 |
gr.HTML(FIVE_PILLAR_DIAGRAM)
|
| 1356 |
gr.Markdown(LLM_BENCHMARKS_TEXT_2, elem_classes="markdown-text")
|
| 1357 |
-
# gr.HTML(EVALUATION_EXAMPLE_IMG, elem_classes="logo")
|
| 1358 |
-
# gr.Markdown(LLM_BENCHMARKS_TEXT_2, elem_classes="markdown-text")
|
| 1359 |
-
# gr.HTML(ENTITY_DISTRIBUTION_IMG, elem_classes="logo")
|
| 1360 |
-
# gr.Markdown(LLM_BENCHMARKS_TEXT_3, elem_classes="markdown-text")
|
| 1361 |
|
| 1362 |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=8):
|
|
|
|
| 1363 |
with gr.Column():
|
| 1364 |
-
|
| 1365 |
-
|
| 1366 |
-
|
| 1367 |
-
with gr.
|
| 1368 |
-
|
| 1369 |
-
|
| 1370 |
-
|
| 1371 |
-
|
| 1372 |
-
with gr.Row():
|
| 1373 |
-
finished_eval_table = gr.components.Dataframe(
|
| 1374 |
-
value=finished_eval_queue_df,
|
| 1375 |
-
headers=EVAL_COLS,
|
| 1376 |
-
datatype=EVAL_TYPES,
|
| 1377 |
-
row_count=5,
|
| 1378 |
-
)
|
| 1379 |
-
with gr.Accordion(
|
| 1380 |
-
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
|
| 1381 |
-
open=False,
|
| 1382 |
-
):
|
| 1383 |
-
with gr.Row():
|
| 1384 |
-
running_eval_table = gr.components.Dataframe(
|
| 1385 |
-
value=running_eval_queue_df,
|
| 1386 |
-
headers=EVAL_COLS,
|
| 1387 |
-
datatype=EVAL_TYPES,
|
| 1388 |
-
row_count=5,
|
| 1389 |
-
)
|
| 1390 |
-
|
| 1391 |
-
with gr.Accordion(
|
| 1392 |
-
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
| 1393 |
-
open=False,
|
| 1394 |
-
):
|
| 1395 |
-
with gr.Row():
|
| 1396 |
-
pending_eval_table = gr.components.Dataframe(
|
| 1397 |
-
value=pending_eval_queue_df,
|
| 1398 |
-
headers=EVAL_COLS,
|
| 1399 |
-
datatype=EVAL_TYPES,
|
| 1400 |
-
row_count=5,
|
| 1401 |
-
)
|
| 1402 |
with gr.Row():
|
| 1403 |
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
| 1404 |
-
|
| 1405 |
with gr.Row():
|
| 1406 |
with gr.Column():
|
| 1407 |
model_name_textbox = gr.Textbox(label="Model name")
|
|
@@ -1459,10 +424,9 @@ with demo:
|
|
| 1459 |
submission_result,
|
| 1460 |
)
|
| 1461 |
|
| 1462 |
-
|
| 1463 |
with gr.Row():
|
| 1464 |
with gr.Accordion("π Citation", open=False):
|
| 1465 |
-
|
| 1466 |
value=CITATION_BUTTON_TEXT,
|
| 1467 |
label=CITATION_BUTTON_LABEL,
|
| 1468 |
lines=20,
|
|
@@ -1470,7 +434,9 @@ with demo:
|
|
| 1470 |
show_copy_button=True,
|
| 1471 |
)
|
| 1472 |
|
|
|
|
| 1473 |
scheduler = BackgroundScheduler()
|
| 1474 |
-
scheduler.add_job(restart_space, "interval", seconds=
|
| 1475 |
scheduler.start()
|
|
|
|
| 1476 |
demo.queue(default_concurrency_limit=40).launch(allowed_paths=['./assets/'], share=True , ssr_mode=False)
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 4 |
from huggingface_hub import snapshot_download
|
| 5 |
import time
|
| 6 |
+
import functools
|
| 7 |
+
import gc
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
|
| 11 |
from src.about import (
|
| 12 |
+
CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT,
|
| 13 |
+
LLM_BENCHMARKS_TEXT_1, LLM_BENCHMARKS_TEXT_2, CROSS_EVALUATION_METRICS,
|
| 14 |
+
NOTE_GENERATION_METRICS, HEALTHBENCH_METRICS, TITLE, LOGO, FIVE_PILLAR_DIAGRAM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
)
|
| 16 |
from src.display.css_html_js import custom_css
|
|
|
|
| 17 |
from src.display.utils import (
|
| 18 |
+
DATASET_BENCHMARK_COLS, OPEN_ENDED_BENCHMARK_COLS, MED_SAFETY_BENCHMARK_COLS,
|
| 19 |
+
MEDICAL_SUMMARIZATION_BENCHMARK_COLS, ACI_BENCHMARK_COLS, SOAP_BENCHMARK_COLS,
|
| 20 |
+
HEALTHBENCH_BENCHMARK_COLS, HEALTHBENCH_HARD_BENCHMARK_COLS, DATASET_COLS,
|
| 21 |
+
OPEN_ENDED_COLS, MED_SAFETY_COLS, MEDICAL_SUMMARIZATION_COLS, ACI_COLS, SOAP_COLS,
|
| 22 |
+
HEALTHBENCH_COLS, HEALTHBENCH_HARD_COLS, EVAL_COLS, EVAL_TYPES, NUMERIC_INTERVALS,
|
| 23 |
+
TYPES, AutoEvalColumn, ModelType, Precision, WeightType, fields, render_generation_templates,
|
| 24 |
+
OpenEndedArabic_COLS, OpenEndedArabic_BENCHMARK_COLS, OpenEndedFrench_COLS,
|
| 25 |
+
OpenEndedFrench_BENCHMARK_COLS, OpenEndedPortuguese_COLS, OpenEndedPortuguese_BENCHMARK_COLS,
|
| 26 |
+
OpenEndedRomanian_COLS, OpenEndedRomanian_BENCHMARK_COLS, OpenEndedGreek_COLS,
|
| 27 |
+
OpenEndedGreek_BENCHMARK_COLS, OpenEndedSpanish_COLS, OpenEndedSpanish_BENCHMARK_COLS,
|
| 28 |
+
ClosedEndedMultilingual_COLS, ClosedEndedMultilingual_BENCHMARK_COLS,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
)
|
| 30 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
|
|
|
| 31 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 32 |
+
from src.submission.submit import add_new_eval
|
| 33 |
+
|
| 34 |
+
# =====================================================================================
|
| 35 |
+
# 1. SETUP AND DATA LOADING
|
| 36 |
+
# =====================================================================================
|
| 37 |
|
| 38 |
def restart_space():
|
| 39 |
API.restart_space(repo_id=REPO_ID)
|
| 40 |
|
| 41 |
|
| 42 |
+
print("Downloading evaluation data...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
try:
|
| 44 |
+
snapshot_download(repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", token=TOKEN)
|
| 45 |
+
snapshot_download(repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", token=TOKEN)
|
| 46 |
+
print("Downloads complete.")
|
| 47 |
+
except Exception as e:
|
| 48 |
+
print(f"An error occurred during download: {e}")
|
|
|
|
|
|
|
| 49 |
restart_space()
|
| 50 |
|
| 51 |
+
print("Loading all dataframes into a central dictionary...")
|
|
|
|
|
|
|
| 52 |
start_time = time.time()
|
| 53 |
|
| 54 |
_, harness_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "accuracy", "datasets")
|
|
|
|
|
|
|
|
|
|
| 55 |
_, open_ended_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OPEN_ENDED_COLS, OPEN_ENDED_BENCHMARK_COLS, "score", "open_ended")
|
|
|
|
|
|
|
|
|
|
| 56 |
_, med_safety_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, MED_SAFETY_COLS, MED_SAFETY_BENCHMARK_COLS, "score", "med_safety")
|
|
|
|
|
|
|
|
|
|
| 57 |
_, medical_summarization_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, MEDICAL_SUMMARIZATION_COLS, MEDICAL_SUMMARIZATION_BENCHMARK_COLS, "score", "medical_summarization")
|
|
|
|
|
|
|
|
|
|
| 58 |
_, aci_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ACI_COLS, ACI_BENCHMARK_COLS, "score", "aci")
|
|
|
|
|
|
|
|
|
|
| 59 |
_, soap_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, SOAP_COLS, SOAP_BENCHMARK_COLS, "score", "soap")
|
|
|
|
|
|
|
|
|
|
| 60 |
_, healthbench_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, HEALTHBENCH_COLS, HEALTHBENCH_BENCHMARK_COLS, "score", "healthbench")
|
|
|
|
|
|
|
| 61 |
_, healthbench_hard_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, HEALTHBENCH_HARD_COLS, HEALTHBENCH_HARD_BENCHMARK_COLS, "score", "healthbench_hard")
|
|
|
|
|
|
|
|
|
|
| 62 |
_, open_ended_arabic_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedArabic_COLS, OpenEndedArabic_BENCHMARK_COLS, "score", "open_ended_arabic")
|
| 63 |
_, open_ended_french_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedFrench_COLS, OpenEndedFrench_BENCHMARK_COLS, "score", "open_ended_french")
|
| 64 |
_, open_ended_portuguese_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedPortuguese_COLS, OpenEndedPortuguese_BENCHMARK_COLS, "score", "open_ended_portuguese")
|
|
|
|
| 67 |
_, open_ended_spanish_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedSpanish_COLS, OpenEndedSpanish_BENCHMARK_COLS, "score", "open_ended_spanish")
|
| 68 |
_, closed_ended_multilingual_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ClosedEndedMultilingual_COLS, ClosedEndedMultilingual_BENCHMARK_COLS, "score", "closed_ended_multilingual")
|
| 69 |
|
| 70 |
+
ALL_DATASETS = {
|
| 71 |
+
"datasets": harness_datasets_original_df,
|
| 72 |
+
"open_ended": open_ended_original_df,
|
| 73 |
+
"med_safety": med_safety_original_df,
|
| 74 |
+
"medical_summarization": medical_summarization_original_df,
|
| 75 |
+
"aci": aci_original_df,
|
| 76 |
+
"soap": soap_original_df,
|
| 77 |
+
"healthbench": healthbench_original_df,
|
| 78 |
+
"healthbench_hard": healthbench_hard_original_df,
|
| 79 |
+
"open_ended_arabic": open_ended_arabic_df,
|
| 80 |
+
"open_ended_french": open_ended_french_df,
|
| 81 |
+
"open_ended_portuguese": open_ended_portuguese_df,
|
| 82 |
+
"open_ended_romanian": open_ended_romanian_df,
|
| 83 |
+
"open_ended_greek": open_ended_greek_df,
|
| 84 |
+
"open_ended_spanish": open_ended_spanish_df,
|
| 85 |
+
"closed_ended_multilingual": closed_ended_multilingual_df,
|
| 86 |
+
}
|
| 87 |
end_time = time.time()
|
| 88 |
+
print(f"Dataframes loaded in {end_time - start_time:.2f} seconds.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
# Evaluation Queue DataFrames
|
| 91 |
+
(finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 92 |
|
| 93 |
+
# =====================================================================================
|
| 94 |
+
# 2. EFFICIENT FILTERING LOGIC
|
| 95 |
+
# =====================================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 98 |
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
| 101 |
final_df = []
|
| 102 |
if query != "":
|
|
|
|
| 112 |
filtered_df = filtered_df.drop_duplicates(
|
| 113 |
subset=[
|
| 114 |
AutoEvalColumn.model.name,
|
|
|
|
|
|
|
| 115 |
]
|
| 116 |
)
|
| 117 |
|
|
|
|
| 121 |
def filter_models(
|
| 122 |
df: pd.DataFrame, type_query: list, domain_specific_query: list, size_query: list, precision_query: list, show_deleted: bool
|
| 123 |
) -> pd.DataFrame:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
filtered_df = df
|
| 126 |
|
|
|
|
| 135 |
if "Generic models" in domain_specific_query:
|
| 136 |
domain_specifics.append(False)
|
| 137 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.is_domain_specific.name].isin(domain_specifics)]
|
| 138 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
if precision_query is not None:
|
| 140 |
if AutoEvalColumn.precision.name in df.columns:
|
| 141 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
|
|
|
| 148 |
|
| 149 |
return filtered_df
|
| 150 |
|
| 151 |
+
def get_filtered_table(
|
| 152 |
+
shown_columns: list,
|
| 153 |
+
query: str,
|
| 154 |
+
domain_specific_query: list,
|
| 155 |
+
size_query: list,
|
| 156 |
+
*, # force subset_name to be a keyword-only argument
|
| 157 |
+
subset_name: str
|
| 158 |
+
):
|
| 159 |
+
original_df = ALL_DATASETS[subset_name]
|
| 160 |
+
|
| 161 |
+
type_query = None
|
| 162 |
+
filtered_df = filter_models(original_df, type_query, domain_specific_query, size_query, None, False)
|
| 163 |
+
filtered_df = filter_queries(query, filtered_df)
|
| 164 |
+
|
| 165 |
+
always_here_cols = [AutoEvalColumn.model.name]
|
| 166 |
+
available_cols = [c for c in shown_columns if c in filtered_df.columns]
|
| 167 |
+
final_df = filtered_df[always_here_cols + available_cols]
|
| 168 |
+
|
| 169 |
+
del filtered_df
|
| 170 |
+
gc.collect()
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
return final_df
|
| 174 |
+
|
| 175 |
+
# =====================================================================================
|
| 176 |
+
# 3. REUSABLE UI CREATION FUNCTION
|
| 177 |
+
# =====================================================================================
|
| 178 |
+
|
| 179 |
+
def create_leaderboard_ui(subset_name: str, column_choices: list, default_columns: list):
|
| 180 |
+
"""Creates a full leaderboard UI block for a given subset."""
|
| 181 |
+
with gr.Row():
|
| 182 |
+
with gr.Column():
|
| 183 |
+
with gr.Row():
|
| 184 |
+
search_bar = gr.Textbox(
|
| 185 |
+
placeholder=f"π Search for models...",
|
| 186 |
+
show_label=False,
|
| 187 |
+
elem_id=f"search-bar-{subset_name}",
|
| 188 |
+
)
|
| 189 |
+
with gr.Row():
|
| 190 |
+
shown_columns = gr.CheckboxGroup(
|
| 191 |
+
choices=column_choices,
|
| 192 |
+
value=default_columns,
|
| 193 |
+
label="Select columns to show",
|
| 194 |
+
elem_id=f"column-select-{subset_name}",
|
| 195 |
+
interactive=True,
|
| 196 |
+
)
|
| 197 |
+
with gr.Column(min_width=320):
|
| 198 |
+
filter_domain_specific = gr.CheckboxGroup(
|
| 199 |
+
label="Domain Specificity",
|
| 200 |
+
choices=["π₯ Clinical models", "Generic models"],
|
| 201 |
+
value=["π₯ Clinical models", "Generic models"],
|
| 202 |
+
interactive=True,
|
| 203 |
+
elem_id=f"filter-domain-{subset_name}",
|
| 204 |
+
)
|
| 205 |
+
filter_columns_size = gr.CheckboxGroup(
|
| 206 |
+
label="Model sizes (in billions of parameters)",
|
| 207 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
| 208 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
| 209 |
+
interactive=True,
|
| 210 |
+
elem_id=f"filter-size-{subset_name}",
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
update_fn = functools.partial(get_filtered_table, subset_name=subset_name)
|
| 214 |
+
|
| 215 |
+
initial_df = update_fn(
|
| 216 |
+
shown_columns=default_columns,
|
| 217 |
+
query="",
|
| 218 |
+
domain_specific_query=["π₯ Clinical models", "Generic models"],
|
| 219 |
+
size_query=list(NUMERIC_INTERVALS.keys())
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
leaderboard_table = gr.Dataframe(
|
| 223 |
+
value=initial_df,
|
| 224 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + default_columns,
|
| 225 |
+
datatype=TYPES,
|
| 226 |
+
elem_id=f"leaderboard-table-{subset_name}",
|
| 227 |
+
interactive=False,
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
inputs = [shown_columns, search_bar, filter_domain_specific, filter_columns_size]
|
| 231 |
+
|
| 232 |
+
# Attach listeners to all input components
|
| 233 |
+
for component in inputs:
|
| 234 |
+
if isinstance(component, gr.Textbox):
|
| 235 |
+
component.submit(update_fn, inputs, leaderboard_table)
|
| 236 |
+
else:
|
| 237 |
+
component.change(update_fn, inputs, leaderboard_table)
|
| 238 |
+
|
| 239 |
+
return leaderboard_table
|
| 240 |
+
|
| 241 |
+
# =====================================================================================
|
| 242 |
+
# 4. GRADIO DEMO UI (Main application layout)
|
| 243 |
+
# =====================================================================================
|
| 244 |
+
|
| 245 |
demo = gr.Blocks(css=custom_css)
|
| 246 |
+
|
| 247 |
with demo:
|
|
|
|
| 248 |
gr.HTML(LOGO)
|
| 249 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 250 |
+
|
| 251 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 252 |
with gr.TabItem("π
Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=1):
|
| 253 |
with gr.Tabs(elem_classes="tab-buttons6") as language_tabs:
|
| 254 |
LANGUAGES = {
|
| 255 |
+
"πΊπΈ English": "open_ended", "π¦πͺ Arabic": "open_ended_arabic",
|
| 256 |
+
"π«π· French": "open_ended_french", "πͺπΈ Spanish": "open_ended_spanish",
|
| 257 |
+
"π΅πΉ Portuguese": "open_ended_portuguese", "π·π΄ Romanian": "open_ended_romanian",
|
|
|
|
|
|
|
|
|
|
| 258 |
"π¬π· Greek": "open_ended_greek",
|
| 259 |
}
|
|
|
|
| 260 |
for idx, (label, subset) in enumerate(LANGUAGES.items()):
|
| 261 |
with gr.TabItem(label, elem_id=f"llm-benchmark-tab-open-{subset}", id=idx):
|
| 262 |
+
judge_text = "**Note:** Llama 3.1 70B Instruct has been used as judge for English." if label == "πΊπΈ English" else "**Note:** Qwen 2.5 72B Instruct has been used as judge for this language."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
gr.Markdown(judge_text, elem_classes="markdown-text")
|
| 264 |
|
| 265 |
+
create_leaderboard_ui(
|
| 266 |
+
subset_name=subset,
|
| 267 |
+
column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)],
|
| 268 |
+
default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
with gr.Accordion("π¬ Generation templates", open=False):
|
| 271 |
with gr.Accordion("Response generation", open=False):
|
| 272 |
render_generation_templates(task="open_ended", generation_type="response_generation")
|
| 273 |
with gr.Accordion("Scoring Rubric", open=False):
|
| 274 |
render_generation_templates(task="open_ended", generation_type="scoring_rubric")
|
| 275 |
+
|
| 276 |
with gr.TabItem("π
Medical Summarization", elem_id="llm-benchmark-tab-table", id=2):
|
| 277 |
gr.Markdown(CROSS_EVALUATION_METRICS, elem_classes="markdown-text")
|
| 278 |
+
create_leaderboard_ui(
|
| 279 |
+
subset_name="medical_summarization",
|
| 280 |
+
column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)],
|
| 281 |
+
default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
with gr.Accordion("π¬ Generation templates", open=False):
|
| 284 |
with gr.Accordion("Response generation", open=False):
|
| 285 |
+
render_generation_templates(task="medical_summarization", generation_type="response_generation")
|
| 286 |
with gr.Accordion("Question generation", open=False):
|
| 287 |
+
render_generation_templates(task="ce", generation_type="question_generation")
|
| 288 |
with gr.Accordion("Cross Examination", open=False):
|
| 289 |
+
render_generation_templates(task="ce", generation_type="cross_examination")
|
| 290 |
+
|
| 291 |
with gr.TabItem("π
Note generation", elem_id="llm-benchmark-tab-table", id=3):
|
| 292 |
gr.Markdown(NOTE_GENERATION_METRICS, elem_classes="markdown-text")
|
| 293 |
+
with gr.Tabs(elem_classes="tab-buttons2"):
|
| 294 |
+
with gr.TabItem("ACI Bench", id=0):
|
| 295 |
+
create_leaderboard_ui(
|
| 296 |
+
subset_name="aci",
|
| 297 |
+
column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)],
|
| 298 |
+
default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
)
|
| 300 |
+
with gr.TabItem("SOAP Notes", id=1):
|
| 301 |
+
create_leaderboard_ui(
|
| 302 |
+
subset_name="soap",
|
| 303 |
+
column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)],
|
| 304 |
+
default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
)
|
| 306 |
+
# Add accordions for this section if needed, similar to other tabs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
|
| 308 |
with gr.TabItem("π
HealthBench", elem_id="llm-benchmark-tab-table", id=4):
|
| 309 |
gr.Markdown(HEALTHBENCH_METRICS, elem_classes="markdown-text")
|
| 310 |
+
with gr.Tabs(elem_classes="tab-buttons2"):
|
| 311 |
+
with gr.TabItem("HealthBench", id=0):
|
| 312 |
+
create_leaderboard_ui(
|
| 313 |
+
subset_name="healthbench",
|
| 314 |
+
column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.healthbench_col)],
|
| 315 |
+
default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.healthbench_col)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
)
|
| 317 |
+
with gr.TabItem("HealthBench-Hard", id=1):
|
| 318 |
+
create_leaderboard_ui(
|
| 319 |
+
subset_name="healthbench_hard",
|
| 320 |
+
column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.healthbench_hard_col)],
|
| 321 |
+
default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.healthbench_hard_col)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
|
| 324 |
with gr.TabItem("π
Med Safety", elem_id="llm-benchmark-tab-table", id=5):
|
| 325 |
+
create_leaderboard_ui(
|
| 326 |
+
subset_name="med_safety",
|
| 327 |
+
column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)],
|
| 328 |
+
default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
with gr.Accordion("π¬ Generation templates", open=False):
|
| 331 |
with gr.Accordion("Response generation", open=False):
|
| 332 |
+
render_generation_templates(task="med_safety", generation_type="response_generation")
|
| 333 |
with gr.Accordion("Scoring Rubric", open=False):
|
| 334 |
+
render_generation_templates(task="med_safety", generation_type="scoring_rubric")
|
| 335 |
+
|
| 336 |
with gr.TabItem("π
Closed Ended Evaluation", elem_id="llm-benchmark-tab-closed", id=6):
|
| 337 |
+
with gr.Tabs(elem_classes="tab-buttons2"):
|
| 338 |
+
with gr.TabItem("English", id=0):
|
| 339 |
+
create_leaderboard_ui(
|
| 340 |
+
subset_name="datasets",
|
| 341 |
+
column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)],
|
| 342 |
+
default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
)
|
| 344 |
+
with gr.TabItem("π Multilingual", id=1):
|
| 345 |
+
gr.Markdown("π **Dataset Information:** This tab uses the Global MMLU dataset filtering only the subcategory: medical (10.7%)")
|
| 346 |
+
create_leaderboard_ui(
|
| 347 |
+
subset_name="closed_ended_multilingual",
|
| 348 |
+
column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)],
|
| 349 |
+
default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=7):
|
| 353 |
gr.Markdown(LLM_BENCHMARKS_TEXT_1, elem_classes="markdown-text")
|
| 354 |
gr.HTML(FIVE_PILLAR_DIAGRAM)
|
| 355 |
gr.Markdown(LLM_BENCHMARKS_TEXT_2, elem_classes="markdown-text")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
|
| 357 |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=8):
|
| 358 |
+
|
| 359 |
with gr.Column():
|
| 360 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 361 |
+
with gr.Accordion(f"β
Finished Evaluations ({len(finished_eval_queue_df)})", open=False):
|
| 362 |
+
gr.Dataframe(value=finished_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5)
|
| 363 |
+
with gr.Accordion(f"π Running Evaluation Queue ({len(running_eval_queue_df)})", open=False):
|
| 364 |
+
gr.Dataframe(value=running_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5)
|
| 365 |
+
with gr.Accordion(f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", open=False):
|
| 366 |
+
gr.Dataframe(value=pending_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5)
|
| 367 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
with gr.Row():
|
| 369 |
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
|
|
|
| 370 |
with gr.Row():
|
| 371 |
with gr.Column():
|
| 372 |
model_name_textbox = gr.Textbox(label="Model name")
|
|
|
|
| 424 |
submission_result,
|
| 425 |
)
|
| 426 |
|
|
|
|
| 427 |
with gr.Row():
|
| 428 |
with gr.Accordion("π Citation", open=False):
|
| 429 |
+
gr.Textbox(
|
| 430 |
value=CITATION_BUTTON_TEXT,
|
| 431 |
label=CITATION_BUTTON_LABEL,
|
| 432 |
lines=20,
|
|
|
|
| 434 |
show_copy_button=True,
|
| 435 |
)
|
| 436 |
|
| 437 |
+
|
| 438 |
scheduler = BackgroundScheduler()
|
| 439 |
+
scheduler.add_job(restart_space, "interval", seconds=86400)
|
| 440 |
scheduler.start()
|
| 441 |
+
|
| 442 |
demo.queue(default_concurrency_limit=40).launch(allowed_paths=['./assets/'], share=True , ssr_mode=False)
|