Spaces:
Runtime error
Runtime error
Create chat.py
Browse files
chat.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
from threading import Thread
|
| 4 |
+
from transformers import (
|
| 5 |
+
AutoTokenizer,
|
| 6 |
+
AutoModelForCausalLM,
|
| 7 |
+
TextIteratorStreamer,
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
MODEL_ID = os.environ.get("MODEL_ID", "swiss-ai/Apertus-8B-Instruct-2509")
|
| 11 |
+
|
| 12 |
+
# ---- Load model & tokenizer once at startup
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True, trust_remote_code=True)
|
| 14 |
+
|
| 15 |
+
# dtype: prefer bfloat16 on GPU (A100/T4 support), else float32 for CPU
|
| 16 |
+
if torch.cuda.is_available():
|
| 17 |
+
torch_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
| 18 |
+
else:
|
| 19 |
+
torch_dtype = torch.float32
|
| 20 |
+
|
| 21 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 22 |
+
MODEL_ID,
|
| 23 |
+
device_map="auto", # accelerate will shard across available devices
|
| 24 |
+
torch_dtype=torch_dtype,
|
| 25 |
+
trust_remote_code=True,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# Ensure we have an EOS if needed
|
| 29 |
+
eos_token_id = tokenizer.eos_token_id
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def _apply_chat_template_with_fallback(messages):
|
| 33 |
+
"""
|
| 34 |
+
Apply the tokenizer's chat template if present; otherwise, fall back to a simple format.
|
| 35 |
+
Returns a string prompt (not tokenized).
|
| 36 |
+
"""
|
| 37 |
+
try:
|
| 38 |
+
return tokenizer.apply_chat_template(
|
| 39 |
+
messages,
|
| 40 |
+
tokenize=False,
|
| 41 |
+
add_generation_prompt=True,
|
| 42 |
+
)
|
| 43 |
+
except Exception:
|
| 44 |
+
# Fallback formatting
|
| 45 |
+
parts = []
|
| 46 |
+
for m in messages:
|
| 47 |
+
role = m.get("role", "user")
|
| 48 |
+
content = m.get("content", "")
|
| 49 |
+
parts.append(f"<|{role}|>\n{content}\n")
|
| 50 |
+
parts.append("<|assistant|>\n")
|
| 51 |
+
return "\n".join(parts)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def chat_with_model(message, history_messages, perspective):
|
| 55 |
+
"""
|
| 56 |
+
Streaming generator for Gradio (Chatbot type='messages').
|
| 57 |
+
Inputs:
|
| 58 |
+
- message: str
|
| 59 |
+
- history_messages: list[{'role': 'user'|'assistant', 'content': str}]
|
| 60 |
+
- perspective: str (system message, optional)
|
| 61 |
+
Yields:
|
| 62 |
+
- (updated_messages_for_chatbot, updated_messages_for_state)
|
| 63 |
+
"""
|
| 64 |
+
# Compose chat messages for this turn
|
| 65 |
+
chat_msgs = []
|
| 66 |
+
if perspective and perspective.strip():
|
| 67 |
+
chat_msgs.append({"role": "system", "content": perspective.strip()})
|
| 68 |
+
|
| 69 |
+
# Append prior turns from UI state (already in messages format)
|
| 70 |
+
for m in history_messages:
|
| 71 |
+
if "role" in m and "content" in m:
|
| 72 |
+
chat_msgs.append({"role": m["role"], "content": m["content"]})
|
| 73 |
+
|
| 74 |
+
# Add the new user message
|
| 75 |
+
chat_msgs.append({"role": "user", "content": message})
|
| 76 |
+
|
| 77 |
+
# Build the prompt with the model's chat template
|
| 78 |
+
prompt_text = _apply_chat_template_with_fallback(chat_msgs)
|
| 79 |
+
|
| 80 |
+
inputs = tokenizer(prompt_text, return_tensors="pt")
|
| 81 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 82 |
+
|
| 83 |
+
# Set up streamer for token-wise output
|
| 84 |
+
streamer = TextIteratorStreamer(
|
| 85 |
+
tokenizer=tokenizer,
|
| 86 |
+
skip_prompt=True,
|
| 87 |
+
skip_special_tokens=True,
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
gen_kwargs = dict(
|
| 91 |
+
**inputs,
|
| 92 |
+
streamer=streamer,
|
| 93 |
+
max_new_tokens=512,
|
| 94 |
+
do_sample=True,
|
| 95 |
+
temperature=0.7,
|
| 96 |
+
top_p=0.9,
|
| 97 |
+
eos_token_id=eos_token_id,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# Launch generation in a background thread
|
| 101 |
+
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
| 102 |
+
thread.start()
|
| 103 |
+
|
| 104 |
+
# Start building the assistant reply incrementally
|
| 105 |
+
reply = ""
|
| 106 |
+
base = history_messages + [{"role": "user", "content": message}]
|
| 107 |
+
|
| 108 |
+
for token_text in streamer:
|
| 109 |
+
reply += token_text
|
| 110 |
+
updated = base + [{"role": "assistant", "content": reply}]
|
| 111 |
+
yield updated, updated
|