Let users jointhe LoRA Library organization
Browse files- app_training.py +1 -2
- trainer.py +12 -0
app_training.py
CHANGED
|
@@ -48,8 +48,7 @@ def create_training_demo(trainer: Trainer,
|
|
| 48 |
choices=[_.value for _ in UploadTarget],
|
| 49 |
value=UploadTarget.LORA_LIBRARY.value)
|
| 50 |
gr.Markdown('''
|
| 51 |
-
- By default, trained models will be uploaded to [LoRA Library](https://huggingface.co/lora-library) (
|
| 52 |
-
Note that it will fail if you are not a member of the organization. So please join the org first. In the case uploading failed, you can use the "Upload" tab to upload your model later.
|
| 53 |
- You can also choose "Personal Profile", in which case, the model will be uploaded to https://huggingface.co/{your_username}/{model_name}.
|
| 54 |
''')
|
| 55 |
|
|
|
|
| 48 |
choices=[_.value for _ in UploadTarget],
|
| 49 |
value=UploadTarget.LORA_LIBRARY.value)
|
| 50 |
gr.Markdown('''
|
| 51 |
+
- By default, trained models will be uploaded to [LoRA Library](https://huggingface.co/lora-library) (see [this example model](https://huggingface.co/lora-library/lora-dreambooth-sample-dog)).
|
|
|
|
| 52 |
- You can also choose "Personal Profile", in which case, the model will be uploaded to https://huggingface.co/{your_username}/{model_name}.
|
| 53 |
''')
|
| 54 |
|
trainer.py
CHANGED
|
@@ -16,6 +16,8 @@ from huggingface_hub import HfApi
|
|
| 16 |
from app_upload import LoRAModelUploader
|
| 17 |
from utils import save_model_card
|
| 18 |
|
|
|
|
|
|
|
| 19 |
|
| 20 |
def pad_image(image: PIL.Image.Image) -> PIL.Image.Image:
|
| 21 |
w, h = image.size
|
|
@@ -33,6 +35,7 @@ def pad_image(image: PIL.Image.Image) -> PIL.Image.Image:
|
|
| 33 |
|
| 34 |
class Trainer:
|
| 35 |
def __init__(self, hf_token: str | None = None):
|
|
|
|
| 36 |
self.api = HfApi(token=hf_token)
|
| 37 |
self.model_uploader = LoRAModelUploader(hf_token)
|
| 38 |
|
|
@@ -48,6 +51,12 @@ class Trainer:
|
|
| 48 |
out_path = instance_data_dir / f'{i:03d}.jpg'
|
| 49 |
image.save(out_path, format='JPEG', quality=100)
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
def run(
|
| 52 |
self,
|
| 53 |
instance_images: list | None,
|
|
@@ -97,6 +106,9 @@ class Trainer:
|
|
| 97 |
instance_data_dir = repo_dir / 'training_data' / output_model_name
|
| 98 |
self.prepare_dataset(instance_images, resolution, instance_data_dir)
|
| 99 |
|
|
|
|
|
|
|
|
|
|
| 100 |
command = f'''
|
| 101 |
accelerate launch train_dreambooth_lora.py \
|
| 102 |
--pretrained_model_name_or_path={base_model} \
|
|
|
|
| 16 |
from app_upload import LoRAModelUploader
|
| 17 |
from utils import save_model_card
|
| 18 |
|
| 19 |
+
URL_TO_JOIN_LORA_LIBRARY_ORG = 'https://huggingface.co/organizations/lora-library/share/hjetHAcKjnPHXhHfbeEcqnBqmhgilFfpOL'
|
| 20 |
+
|
| 21 |
|
| 22 |
def pad_image(image: PIL.Image.Image) -> PIL.Image.Image:
|
| 23 |
w, h = image.size
|
|
|
|
| 35 |
|
| 36 |
class Trainer:
|
| 37 |
def __init__(self, hf_token: str | None = None):
|
| 38 |
+
self.hf_token = hf_token
|
| 39 |
self.api = HfApi(token=hf_token)
|
| 40 |
self.model_uploader = LoRAModelUploader(hf_token)
|
| 41 |
|
|
|
|
| 51 |
out_path = instance_data_dir / f'{i:03d}.jpg'
|
| 52 |
image.save(out_path, format='JPEG', quality=100)
|
| 53 |
|
| 54 |
+
def join_lora_library_org(self) -> None:
|
| 55 |
+
subprocess.run(
|
| 56 |
+
shlex.split(
|
| 57 |
+
f'curl -X POST -H "Authorization: Bearer {self.hf_token}" -H "Content-Type: application/json" {URL_TO_JOIN_LORA_LIBRARY_ORG}'
|
| 58 |
+
))
|
| 59 |
+
|
| 60 |
def run(
|
| 61 |
self,
|
| 62 |
instance_images: list | None,
|
|
|
|
| 106 |
instance_data_dir = repo_dir / 'training_data' / output_model_name
|
| 107 |
self.prepare_dataset(instance_images, resolution, instance_data_dir)
|
| 108 |
|
| 109 |
+
if upload_to_hub:
|
| 110 |
+
self.join_lora_library_org()
|
| 111 |
+
|
| 112 |
command = f'''
|
| 113 |
accelerate launch train_dreambooth_lora.py \
|
| 114 |
--pretrained_model_name_or_path={base_model} \
|