Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
# Load NER model. Device -1 means CPU.
|
| 5 |
+
# If you have a GPU, you can set device=0 or the appropriate GPU index.
|
| 6 |
+
ner_model = pipeline("token-classification", model="loolootech/no-name-ner-th", device=-1)
|
| 7 |
+
|
| 8 |
+
ENTITY_TO_ANONYMIZED_TOKEN_MAP = {
|
| 9 |
+
"PERSON": "[PERSON]",
|
| 10 |
+
"PHONE": "[PHONE]",
|
| 11 |
+
"EMAIL": "[EMAIL]",
|
| 12 |
+
"ADDRESS": "[LOCATION]",
|
| 13 |
+
"DATE": "[DATE]",
|
| 14 |
+
"NATIONAL_ID": "[NATIONAL_ID]",
|
| 15 |
+
"HOSPITAL_IDS": "[HOSPITAL_IDS]",
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
def anonymize_text(original_text):
|
| 19 |
+
"""
|
| 20 |
+
Anonymizes sensitive entities in the input text using a named entity recognition (NER) model.
|
| 21 |
+
|
| 22 |
+
Parameters
|
| 23 |
+
----------
|
| 24 |
+
original_text : str
|
| 25 |
+
The text that may contain sensitive information such as names, phone numbers, emails, etc.
|
| 26 |
+
|
| 27 |
+
Returns
|
| 28 |
+
-------
|
| 29 |
+
list
|
| 30 |
+
A list containing:
|
| 31 |
+
- original_text: the original input string
|
| 32 |
+
- anonymized_text: the text with specified entities replaced by tokens
|
| 33 |
+
- anonymized_entities: a list of dictionaries for each anonymized entity, containing
|
| 34 |
+
the original word and its entity label
|
| 35 |
+
|
| 36 |
+
Notes
|
| 37 |
+
-----
|
| 38 |
+
- Requires `ner_model` to be defined and initialized (e.g., a HuggingFace NER pipeline).
|
| 39 |
+
- The mapping `ENTITY_TO_ANONYMIZED_TOKEN_MAP` defines which entity types will be replaced
|
| 40 |
+
and what token will be used.
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
# Step 1: Perform NER on the input text
|
| 44 |
+
ner_results = ner_model(original_text)
|
| 45 |
+
|
| 46 |
+
# Step 2: Combine overlapping or adjacent entities of the same type
|
| 47 |
+
combined_entities = []
|
| 48 |
+
for entity in ner_results:
|
| 49 |
+
# Normalize entity label (e.g., "B-PERSON" -> "PERSON")
|
| 50 |
+
entity_name = entity['entity'].split('-')[-1]
|
| 51 |
+
entity['entity'] = entity_name
|
| 52 |
+
|
| 53 |
+
# Add as new entity if list is empty, different type, or non-overlapping
|
| 54 |
+
if not combined_entities or combined_entities[-1]['entity'] != entity_name or \
|
| 55 |
+
combined_entities[-1]['start'] + len(combined_entities[-1]['word']) < entity['start']:
|
| 56 |
+
combined_entities.append(entity)
|
| 57 |
+
else:
|
| 58 |
+
# Merge adjacent/overlapping entities of the same type
|
| 59 |
+
combined_entities[-1]['word'] += ' ' + entity['word']
|
| 60 |
+
combined_entities[-1]['end'] = entity['end']
|
| 61 |
+
|
| 62 |
+
# Step 3: Filter entities that should be anonymized
|
| 63 |
+
entities_to_anonymize = [
|
| 64 |
+
e for e in combined_entities if e['entity'] in ENTITY_TO_ANONYMIZED_TOKEN_MAP.keys()
|
| 65 |
+
]
|
| 66 |
+
|
| 67 |
+
# Step 4: Sort entities in reverse order of start index to safely replace them
|
| 68 |
+
entities_to_anonymize.sort(key=lambda x: x['start'], reverse=True)
|
| 69 |
+
|
| 70 |
+
# Step 5: Replace each entity in the text with the corresponding anonymized token
|
| 71 |
+
anonymized_text = original_text
|
| 72 |
+
for entity in entities_to_anonymize:
|
| 73 |
+
start, end = entity['start'], entity['end']
|
| 74 |
+
token = ENTITY_TO_ANONYMIZED_TOKEN_MAP.get(entity['entity'])
|
| 75 |
+
anonymized_text = anonymized_text[:start] + token + anonymized_text[end:]
|
| 76 |
+
|
| 77 |
+
# Step 6: Return original text, anonymized text, and information about redacted entities
|
| 78 |
+
return [
|
| 79 |
+
original_text,
|
| 80 |
+
anonymized_text,
|
| 81 |
+
[{"word": e["word"], "label": e["entity"]} for e in entities_to_anonymize]
|
| 82 |
+
]
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
with gr.Blocks(title="Thai Clinical Conversation De-identification") as demo:
|
| 86 |
+
gr.HTML(
|
| 87 |
+
"""
|
| 88 |
+
<div style="text-align: center;">
|
| 89 |
+
<h1 style="font-size: 3em;">Thai Clinical Conversation De-identification</h1>
|
| 90 |
+
<p style="font-size: 1.2em;">Paste Thai clinical or personal text below to redact sensitive info.</p>
|
| 91 |
+
</div>
|
| 92 |
+
"""
|
| 93 |
+
)
|
| 94 |
+
# Use a gr.Row with gr.Column spacers to center the image
|
| 95 |
+
with gr.Row():
|
| 96 |
+
gr.Column(scale=1) # Left spacer
|
| 97 |
+
gr.Image(
|
| 98 |
+
value="assets/mascot-image-landscape.png", # Replace with your image URL/path
|
| 99 |
+
width=200, # Set a smaller width for the image
|
| 100 |
+
show_label=False,
|
| 101 |
+
container=False # Prevent the image from being wrapped in a default Gradio container
|
| 102 |
+
)
|
| 103 |
+
gr.Column(scale=1) # Right spacer
|
| 104 |
+
|
| 105 |
+
# Add the main interface components
|
| 106 |
+
gr.Interface(
|
| 107 |
+
fn=anonymize_text,
|
| 108 |
+
inputs=gr.Textbox(lines=10, label="Input Text"),
|
| 109 |
+
outputs=[
|
| 110 |
+
gr.Textbox(label="Original Text"),
|
| 111 |
+
gr.Textbox(label="Anonymized Text"),
|
| 112 |
+
gr.JSON(label="Entities")
|
| 113 |
+
],
|
| 114 |
+
live=False, # Set live=False since we are using Blocks now
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
if __name__ == "__main__":
|
| 118 |
+
demo.launch(share=False)
|