nanochat-mid / app.py
loocorez's picture
Upload app.py with huggingface_hub
2e62b02 verified
import os
os.environ.setdefault("HF_HOME", "/tmp/hf")
os.environ.setdefault("HF_HUB_CACHE", "/tmp/hf/hub")
os.environ.setdefault("TRANSFORMERS_CACHE", "/tmp/hf/transformers")
os.environ.setdefault("NANOCHAT_BASE_DIR", "/tmp/nanochat")
from huggingface_hub import hf_hub_download
import torch
import gradio as gr
import json
import pickle
from nanochat.gpt import GPT, GPTConfig
# Hardcoded model selection for this Space
MODEL_REPO = "loocorez/nanochat-mid-d20-step765"
STEP = "000765"
DEPTH = "20"
ckpt_dir = f"/tmp/ckpt/d{DEPTH}"
os.makedirs(ckpt_dir, exist_ok=True)
tok_local = hf_hub_download(MODEL_REPO, "tokenizer/tokenizer.pkl", local_dir="/tmp", local_dir_use_symlinks=False)
model_path = hf_hub_download(MODEL_REPO, f"mid_checkpoints/d{DEPTH}/model_{STEP}.pt", local_dir=ckpt_dir, local_dir_use_symlinks=False)
meta_path = hf_hub_download(MODEL_REPO, f"mid_checkpoints/d{DEPTH}/meta_{STEP}.json", local_dir=ckpt_dir, local_dir_use_symlinks=False)
class PklTokenizer:
def __init__(self, pkl_path):
with open(pkl_path, "rb") as f:
self.enc = pickle.load(f)
self._bos_id = self.encode_special("<|bos|>")
def get_bos_token_id(self):
return self._bos_id
def encode_special(self, text):
return self.enc.encode_single_token(text)
def encode(self, text):
return self.enc.encode_ordinary(text)
def decode(self, ids):
return self.enc.decode(ids)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with open(meta_path, "r") as f:
meta = json.load(f)
cfg = GPTConfig(**meta["model_config"])
with torch.device("meta"):
model = GPT(cfg)
model.to_empty(device=device)
model.init_weights()
state = torch.load(model_path, map_location=device)
state = {k.lstrip("_orig_mod."): v for k, v in state.items()}
model.load_state_dict(state, strict=True, assign=True)
model.eval()
tokenizer = PklTokenizer(tok_local)
def chat_fn(history, temperature=0.8, top_k=50, max_new_tokens=256):
bos = tokenizer.get_bos_token_id()
user_start = tokenizer.encode_special("<|user_start|>")
user_end = tokenizer.encode_special("<|user_end|>")
assistant_start = tokenizer.encode_special("<|assistant_start|>")
assistant_end = tokenizer.encode_special("<|assistant_end|>")
tokens = [bos]
for role, content in history:
if role == "user":
tokens += [user_start] + tokenizer.encode(content) + [user_end]
else:
tokens += [assistant_start] + tokenizer.encode(content) + [assistant_end]
tokens += [assistant_start]
generated = []
use_cuda = device.type == "cuda"
dtype = torch.bfloat16 if use_cuda else torch.float32
with torch.amp.autocast(device_type=("cuda" if use_cuda else "cpu"), dtype=dtype):
for token in model.generate(tokens, max_tokens=max_new_tokens, temperature=temperature, top_k=top_k):
if token == assistant_end or token == bos:
break
generated.append(token)
return tokenizer.decode(generated)
with gr.Blocks() as demo:
gr.Markdown("# NanoChat MID")
chat = gr.Chatbot(type="tuple")
msg = gr.Textbox()
temp = gr.Slider(0.0, 1.5, value=0.8, step=0.05, label="Temperature")
topk = gr.Slider(1, 200, value=50, step=1, label="Top-k")
max_toks = gr.Slider(16, 1024, value=256, step=16, label="Max new tokens")
def respond(user_message, chat_history, temperature, top_k, max_new_tokens):
chat_history = chat_history + [("user", user_message)]
reply = chat_fn(chat_history, temperature, top_k, max_new_tokens)
chat_history = chat_history + [("assistant", reply)]
return "", chat_history
msg.submit(respond, [msg, chat, temp, topk, max_toks], [msg, chat])
demo.launch()