Spaces:
Sleeping
Sleeping
File size: 32,034 Bytes
b4b0e11 c55bef3 b4b0e11 54e7aa1 b4b0e11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 |
import torch
import numpy as np
from PIL import Image
import cv2
import os
import sys
import time
import logging
from pathlib import Path
from typing import Tuple, Dict, List, Optional, Union
import gradio as gr
from huggingface_hub import hf_hub_download
import warnings
warnings.filterwarnings("ignore")
from detectron2.config import get_cfg
from detectron2.projects.deeplab import add_deeplab_config
from detectron2.data import MetadataCatalog
from detectron2.engine.defaults import DefaultPredictor
from detectron2 import model_zoo
from detectron2.utils.visualizer import Visualizer, ColorMode
try:
from oneformer import (
add_oneformer_config,
add_common_config,
add_swin_config,
add_dinat_config,
)
from demo.defaults import DefaultPredictor as OneFormerPredictor
ONEFORMER_AVAILABLE = True
except ImportError as e:
print(f"OneFormer not available: {e}")
ONEFORMER_AVAILABLE = False
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
CPU_DEVICE = torch.device("cpu")
torch.set_num_threads(4)
FLOOR_CLASSES = {
'floor': [3, 4, 13],
'carpet': [28],
'mat': [78],
}
ONEFORMER_CONFIG = {
"ADE20K": {
"key": "ade20k",
"swin_cfg": "configs/ade20k/oneformer_swin_large_IN21k_384_bs16_160k.yaml",
"swin_model": "shi-labs/oneformer_ade20k_swin_large",
"swin_file": "250_16_swin_l_oneformer_ade20k_160k.pth",
"process_size": 640,
"max_size": 2560
}
}
BLACKSPOT_MODEL_REPO = "lolout1/txstNeuroNest"
BLACKSPOT_MODEL_FILE = "model_0004999.pth"
DISPLAY_MAX_WIDTH = 1920
DISPLAY_MAX_HEIGHT = 1080
from universal_contrast_analyzer import UniversalContrastAnalyzer
def resize_image_for_processing(image: np.ndarray, target_size: int = 640, max_size: int = 2560) -> Tuple[np.ndarray, float]:
h, w = image.shape[:2]
scale = target_size / min(h, w)
if scale * max(h, w) > max_size:
scale = max_size / max(h, w)
new_w = int(w * scale)
new_h = int(h * scale)
new_w = (new_w // 32) * 32
new_h = (new_h // 32) * 32
resized = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LANCZOS4)
return resized, scale
def resize_mask_to_original(mask: np.ndarray, original_size: Tuple[int, int]) -> np.ndarray:
return cv2.resize(mask.astype(np.uint8), (original_size[1], original_size[0]), interpolation=cv2.INTER_NEAREST)
def prepare_display_image(image: np.ndarray, max_width: int = DISPLAY_MAX_WIDTH, max_height: int = DISPLAY_MAX_HEIGHT) -> np.ndarray:
h, w = image.shape[:2]
scale = 1.0
if w > max_width:
scale = max_width / w
if h * scale > max_height:
scale = max_height / h
if scale < 1.0:
new_w = int(w * scale)
new_h = int(h * scale)
return cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LANCZOS4)
return image
class OneFormerManager:
def __init__(self):
self.predictor = None
self.metadata = None
self.initialized = False
self.process_size = ONEFORMER_CONFIG["ADE20K"]["process_size"]
self.max_size = ONEFORMER_CONFIG["ADE20K"]["max_size"]
def initialize(self, backbone: str = "swin"):
if not ONEFORMER_AVAILABLE:
logger.error("OneFormer not available")
return False
try:
cfg = get_cfg()
add_deeplab_config(cfg)
add_common_config(cfg)
add_swin_config(cfg)
add_oneformer_config(cfg)
add_dinat_config(cfg)
config = ONEFORMER_CONFIG["ADE20K"]
cfg.merge_from_file(config["swin_cfg"])
cfg.MODEL.DEVICE = DEVICE
model_path = hf_hub_download(
repo_id=config["swin_model"],
filename=config["swin_file"]
)
cfg.MODEL.WEIGHTS = model_path
cfg.freeze()
self.predictor = OneFormerPredictor(cfg)
self.metadata = MetadataCatalog.get(
cfg.DATASETS.TEST_PANOPTIC[0] if len(cfg.DATASETS.TEST_PANOPTIC) else "__unused"
)
self.initialized = True
logger.info("OneFormer initialized successfully")
return True
except Exception as e:
logger.error(f"Failed to initialize OneFormer: {e}")
return False
def semantic_segmentation(self, image: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
if not self.initialized:
raise RuntimeError("OneFormer not initialized")
original_size = (image.shape[0], image.shape[1])
image_processed, scale = resize_image_for_processing(image, self.process_size, self.max_size)
logger.info(f"Processing image at {image_processed.shape}, scale: {scale}")
predictions = self.predictor(image_processed, "semantic")
seg_mask_processed = predictions["sem_seg"].argmax(dim=0).cpu().numpy()
seg_mask_original = resize_mask_to_original(seg_mask_processed, original_size)
visualizer = Visualizer(
image[:, :, ::-1],
metadata=self.metadata,
instance_mode=ColorMode.IMAGE,
scale=1.0
)
vis_output = visualizer.draw_sem_seg(seg_mask_original, alpha=0.6)
vis_image = vis_output.get_image()[:, :, ::-1]
vis_image_display = prepare_display_image(vis_image)
return seg_mask_original, vis_image_display
def extract_floor_areas(self, segmentation: np.ndarray) -> np.ndarray:
floor_mask = np.zeros_like(segmentation, dtype=bool)
for class_ids in FLOOR_CLASSES.values():
for class_id in class_ids:
floor_mask |= (segmentation == class_id)
return floor_mask
class ImprovedBlackspotDetector:
def __init__(self, model_path: str = None):
self.model_path = model_path
self.predictor = None
self.floor_classes = [3, 4, 13, 28, 78]
def download_model(self) -> str:
try:
model_path = hf_hub_download(
repo_id=BLACKSPOT_MODEL_REPO,
filename=BLACKSPOT_MODEL_FILE
)
logger.info(f"Downloaded blackspot model to: {model_path}")
return model_path
except Exception as e:
logger.warning(f"Could not download blackspot model from HF: {e}")
local_path = f"./output_floor_blackspot/{BLACKSPOT_MODEL_FILE}"
if os.path.exists(local_path):
logger.info(f"Using local blackspot model: {local_path}")
return local_path
return None
def initialize(self, threshold: float = 0.5) -> bool:
try:
if self.model_path is None:
self.model_path = self.download_model()
if self.model_path is None:
logger.error("No blackspot model available")
return False
cfg = get_cfg()
cfg.merge_from_file(
model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = threshold
cfg.MODEL.WEIGHTS = self.model_path
cfg.MODEL.DEVICE = DEVICE
self.predictor = DefaultPredictor(cfg)
logger.info("MaskRCNN blackspot detector initialized")
return True
except Exception as e:
logger.error(f"Failed to initialize blackspot detector: {e}")
return False
def is_on_floor_surface(
self,
blackspot_mask: np.ndarray,
segmentation: np.ndarray,
floor_mask: np.ndarray,
overlap_threshold: float = 0.8
) -> bool:
if np.sum(blackspot_mask) == 0:
return False
overlap = blackspot_mask & floor_mask
overlap_ratio = np.sum(overlap) / np.sum(blackspot_mask)
if overlap_ratio < overlap_threshold:
return False
blackspot_pixels = segmentation[blackspot_mask]
if len(blackspot_pixels) == 0:
return False
unique_classes, counts = np.unique(blackspot_pixels, return_counts=True)
floor_pixel_count = sum(
counts[unique_classes == cls] for cls in self.floor_classes if cls in unique_classes
)
floor_ratio = floor_pixel_count / len(blackspot_pixels)
return floor_ratio > 0.7
def filter_non_floor_blackspots(
self,
blackspot_masks: List[np.ndarray],
segmentation: np.ndarray,
floor_mask: np.ndarray
) -> List[np.ndarray]:
filtered_masks = []
for mask in blackspot_masks:
if self.is_on_floor_surface(mask, segmentation, floor_mask):
filtered_masks.append(mask)
else:
logger.debug(f"Filtered out non-floor blackspot with area {np.sum(mask)}")
return filtered_masks
def detect_blackspots(
self,
image: np.ndarray,
segmentation: np.ndarray,
floor_prior: Optional[np.ndarray] = None
) -> Dict:
if self.predictor is None:
raise RuntimeError("Blackspot detector not initialized")
original_h, original_w = image.shape[:2]
if floor_prior is not None and floor_prior.shape != (original_h, original_w):
floor_prior = cv2.resize(
floor_prior.astype(np.uint8),
(original_w, original_h),
interpolation=cv2.INTER_NEAREST
).astype(bool)
if segmentation.shape != (original_h, original_w):
segmentation = cv2.resize(
segmentation.astype(np.uint8),
(original_w, original_h),
interpolation=cv2.INTER_NEAREST
)
try:
outputs = self.predictor(image)
instances = outputs["instances"].to("cpu")
except Exception as e:
logger.error(f"Error in MaskRCNN prediction: {e}")
return self._empty_results(image)
if len(instances) == 0:
return self._empty_results(image)
pred_classes = instances.pred_classes.numpy()
pred_masks = instances.pred_masks.numpy()
scores = instances.scores.numpy()
blackspot_indices = pred_classes == 1
blackspot_masks = pred_masks[blackspot_indices] if np.any(blackspot_indices) else []
blackspot_scores = scores[blackspot_indices] if np.any(blackspot_indices) else []
if floor_prior is not None:
floor_mask = floor_prior
else:
floor_mask = np.zeros(segmentation.shape, dtype=bool)
for cls in self.floor_classes:
floor_mask |= (segmentation == cls)
filtered_blackspot_masks = self.filter_non_floor_blackspots(
blackspot_masks, segmentation, floor_mask
)
combined_blackspot = np.zeros(image.shape[:2], dtype=bool)
for mask in filtered_blackspot_masks:
combined_blackspot |= mask
visualization = self.create_visualization(image, floor_mask, combined_blackspot)
visualization_display = prepare_display_image(visualization)
floor_area = int(np.sum(floor_mask))
blackspot_area = int(np.sum(combined_blackspot))
coverage_percentage = (blackspot_area / floor_area * 100) if floor_area > 0 else 0
return {
'visualization': visualization_display,
'floor_mask': floor_mask,
'blackspot_mask': combined_blackspot,
'floor_area': floor_area,
'blackspot_area': blackspot_area,
'coverage_percentage': coverage_percentage,
'num_detections': len(filtered_blackspot_masks),
'avg_confidence': float(np.mean(blackspot_scores)) if len(blackspot_scores) > 0 else 0.0
}
def create_visualization(
self,
image: np.ndarray,
floor_mask: np.ndarray,
blackspot_mask: np.ndarray
) -> np.ndarray:
vis = image.copy()
floor_overlay = vis.copy()
floor_overlay[floor_mask] = [0, 255, 0]
vis = cv2.addWeighted(vis, 0.7, floor_overlay, 0.3, 0)
vis[blackspot_mask] = [255, 0, 0]
blackspot_contours, _ = cv2.findContours(
blackspot_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
cv2.drawContours(vis, blackspot_contours, -1, (255, 255, 0), 4)
return vis
def _empty_results(self, image: np.ndarray) -> Dict:
empty_mask = np.zeros(image.shape[:2], dtype=bool)
visualization_display = prepare_display_image(image)
return {
'visualization': visualization_display,
'floor_mask': empty_mask,
'blackspot_mask': empty_mask,
'floor_area': 0,
'blackspot_area': 0,
'coverage_percentage': 0,
'num_detections': 0,
'avg_confidence': 0.0
}
class NeuroNestApp:
def __init__(self):
self.oneformer = OneFormerManager()
self.blackspot_detector = None
self.contrast_analyzer = UniversalContrastAnalyzer(wcag_threshold=4.5)
self.initialized = False
def initialize(self):
logger.info("Initializing NeuroNest application...")
oneformer_success = self.oneformer.initialize()
blackspot_success = False
try:
self.blackspot_detector = ImprovedBlackspotDetector()
blackspot_success = self.blackspot_detector.initialize()
except Exception as e:
logger.warning(f"Could not initialize blackspot detector: {e}")
self.initialized = oneformer_success
return oneformer_success, blackspot_success
def analyze_image(
self,
image_path: str,
blackspot_threshold: float = 0.5,
contrast_threshold: float = 4.5,
enable_blackspot: bool = True,
enable_contrast: bool = True
) -> Dict:
if not self.initialized:
return {"error": "Application not properly initialized"}
try:
image = cv2.imread(image_path, cv2.IMREAD_COLOR)
if image is None:
return {"error": "Could not load image"}
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
logger.info(f"Loaded image with shape: {image_rgb.shape}")
results = {
'original_image': image_rgb,
'segmentation': None,
'blackspot': None,
'contrast': None,
'statistics': {}
}
logger.info("Running semantic segmentation...")
seg_mask, seg_visualization = self.oneformer.semantic_segmentation(image_rgb)
results['segmentation'] = {
'visualization': seg_visualization,
'mask': seg_mask
}
floor_prior = self.oneformer.extract_floor_areas(seg_mask)
if enable_blackspot and self.blackspot_detector is not None:
logger.info("Running blackspot detection...")
try:
blackspot_results = self.blackspot_detector.detect_blackspots(
image_rgb, seg_mask, floor_prior
)
results['blackspot'] = blackspot_results
logger.info("Blackspot detection completed")
except Exception as e:
logger.error(f"Error in blackspot detection: {e}")
results['blackspot'] = None
if enable_contrast:
logger.info("Running universal contrast analysis...")
try:
contrast_results = self.contrast_analyzer.analyze_contrast(
image_rgb, seg_mask
)
contrast_viz_display = prepare_display_image(contrast_results['visualization'])
contrast_results['visualization'] = contrast_viz_display
results['contrast'] = contrast_results
logger.info("Contrast analysis completed")
except Exception as e:
logger.error(f"Error in contrast analysis: {e}")
results['contrast'] = None
stats = self._generate_statistics(results)
results['statistics'] = stats
logger.info("Image analysis completed successfully")
return results
except Exception as e:
logger.error(f"Error in image analysis: {e}")
import traceback
traceback.print_exc()
return {"error": f"Analysis failed: {str(e)}"}
def _generate_statistics(self, results: Dict) -> Dict:
stats = {}
if results['segmentation']:
unique_classes = np.unique(results['segmentation']['mask'])
stats['segmentation'] = {
'num_classes': len(unique_classes),
'image_size': results['segmentation']['mask'].shape
}
if results['blackspot']:
bs = results['blackspot']
stats['blackspot'] = {
'floor_area_pixels': bs['floor_area'],
'blackspot_area_pixels': bs['blackspot_area'],
'coverage_percentage': bs['coverage_percentage'],
'num_detections': bs['num_detections'],
'avg_confidence': bs['avg_confidence']
}
if results['contrast']:
cs = results['contrast']['statistics']
stats['contrast'] = {
'total_segments': cs.get('total_segments', 0),
'analyzed_pairs': cs.get('analyzed_pairs', 0),
'low_contrast_pairs': cs.get('low_contrast_pairs', 0),
'critical_issues': cs.get('critical_issues', 0),
'high_priority_issues': cs.get('high_priority_issues', 0),
'medium_priority_issues': cs.get('medium_priority_issues', 0),
'floor_object_issues': cs.get('floor_object_issues', 0)
}
return stats
def create_gradio_interface():
app = NeuroNestApp()
oneformer_ok, blackspot_ok = app.initialize()
if not oneformer_ok:
raise RuntimeError("Failed to initialize OneFormer")
# Define sample images
SAMPLE_IMAGES = [
"samples/example1.png",
"samples/example2.png",
"samples/example3.png"
]
# Check if sample images exist
sample_images_available = all(os.path.exists(img) for img in SAMPLE_IMAGES)
def analyze_wrapper(
image_path,
blackspot_threshold,
contrast_threshold,
enable_blackspot,
enable_contrast
):
if image_path is None:
return None, None, None, "Please upload an image"
results = app.analyze_image(
image_path=image_path,
blackspot_threshold=blackspot_threshold,
contrast_threshold=contrast_threshold,
enable_blackspot=enable_blackspot,
enable_contrast=enable_contrast
)
if "error" in results:
return None, None, None, f"Error: {results['error']}"
seg_output = results['segmentation']['visualization'] if results['segmentation'] else None
blackspot_output = results['blackspot']['visualization'] if results['blackspot'] else None
contrast_output = results['contrast']['visualization'] if results['contrast'] else None
if results['contrast']:
contrast_report = app.contrast_analyzer.generate_report(results['contrast'])
else:
contrast_report = "Contrast analysis not performed."
if results['blackspot']:
bs = results['blackspot']
blackspot_report = (
f"**Floor Area:** {bs['floor_area']:,} pixels \n"
f"**Blackspot Area:** {bs['blackspot_area']:,} pixels \n"
f"**Coverage:** {bs['coverage_percentage']:.2f}% \n"
f"**Detections:** {bs['num_detections']} \n"
f"**Average Confidence:** {bs['avg_confidence']:.2f}"
)
else:
blackspot_report = "Blackspot analysis not performed."
report = generate_comprehensive_report(results, contrast_report, blackspot_report)
return seg_output, blackspot_output, contrast_output, report
def generate_comprehensive_report(results: Dict, contrast_report: str, blackspot_report: str) -> str:
report = ["# π§ NeuroNest Analysis Report\n"]
report.append(f"*Generated: {time.strftime('%Y-%m-%d %H:%M:%S')}*\n")
if results['segmentation']:
stats = results['statistics'].get('segmentation', {})
report.append("## π― Object Segmentation")
report.append(f"- **Classes detected:** {stats.get('num_classes', 'N/A')}")
report.append(f"- **Resolution:** {stats.get('image_size', 'N/A')}")
report.append("")
report.append("## β« Blackspot Analysis")
report.append(blackspot_report)
report.append("")
report.append("## π¨ Universal Contrast Analysis")
report.append(contrast_report)
report.append("")
report.append("## π Recommendations for Alzheimer's Care")
has_issues = False
if results['blackspot'] and results['statistics']['blackspot']['coverage_percentage'] > 0:
has_issues = True
report.append("\n### Blackspot Mitigation:")
report.append("- Replace dark flooring materials with lighter alternatives")
report.append("- Install additional lighting in affected areas")
report.append("- Use light-colored rugs or runners to cover dark spots")
report.append("- Add contrasting tape or markers around blackspot perimeters")
if results['contrast'] and results['statistics']['contrast']['low_contrast_pairs'] > 0:
has_issues = True
report.append("\n### Contrast Improvements:")
contrast_issues = results['contrast']['issues']
critical_issues = [i for i in contrast_issues if i['severity'] == 'critical']
high_issues = [i for i in contrast_issues if i['severity'] == 'high']
if critical_issues:
report.append("\n**CRITICAL - Immediate attention required:**")
for issue in critical_issues[:3]:
cat1, cat2 = issue['categories']
report.append(f"- {cat1.title()} β {cat2.title()}: Increase contrast to 7:1 minimum")
if high_issues:
report.append("\n**HIGH PRIORITY:**")
for issue in high_issues[:3]:
cat1, cat2 = issue['categories']
report.append(f"- {cat1.title()} β {cat2.title()}: Increase contrast to 4.5:1 minimum")
report.append("\n**General recommendations:**")
report.append("- Paint furniture in colors that contrast with floors/walls")
report.append("- Add colored tape or markers to furniture edges")
report.append("- Install LED strip lighting under furniture edges")
report.append("- Use contrasting placemats, cushions, or covers")
if not has_issues:
report.append("\nβ
**Excellent!** This environment appears well-optimized for individuals with Alzheimer's.")
report.append("No significant visual hazards detected.")
return "\n".join(report)
title = "π§ NeuroNest: AI-Powered Environment Safety Analysis"
description = """
**This is the backend of NeuroNest - an object detection and visual analysis application intended to improve the lives of those affected by Alzheimers.**
**This version uses the free-tier CPU inferencing, it will take up to 3 minutes to process a picture**
**Texas State CS && Interior Design Dept. - Abheek Pradhan, Dr. Nadim Adi, Dr. Greg Lakomski**
This system provides:
- **Object Segmentation**: Identifies all room elements (floors, walls, furniture)
- **Floor-Only Blackspot Detection**: Locates dangerous dark areas on walking surfaces
- **Universal Contrast Analysis**: Evaluates visibility between ALL adjacent objects
*Following WCAG 2.1 guidelines for visual accessibility | Upload a Picture. Click 'Analyze Environment'.Then scroll down.*
"""
with gr.Blocks(css="""
.container { max-width: 100%; margin: auto; padding: 20px; }
.image-output { margin: 20px 0; }
.image-output img {
width: 100%;
height: auto;
max-width: 1920px;
margin: 0 auto;
display: block;
border: 1px solid #ddd;
border-radius: 8px;
}
.controls-row { margin-bottom: 30px; background: #f5f5f5; padding: 20px; border-radius: 8px; }
.main-button { height: 80px !important; font-size: 1.3em !important; font-weight: bold !important; }
.report-box { max-width: 1200px; margin: 30px auto; padding: 30px; background: #f9f9f9; border-radius: 8px; }
h2 { margin-top: 40px; margin-bottom: 20px; color: #333; }
.sample-section {
margin-bottom: 30px;
padding: 20px;
background: #fafafa;
border-radius: 12px;
border: 1px solid #e0e0e0;
}
.examples-holder .examples-table {
display: flex !important;
justify-content: center !important;
gap: 20px !important;
margin-top: 15px !important;
}
.examples-holder img {
border-radius: 8px;
cursor: pointer;
transition: transform 0.2s, box-shadow 0.2s;
border: 2px solid transparent;
}
.examples-holder img:hover {
transform: scale(1.05);
box-shadow: 0 4px 12px rgba(0,0,0,0.15);
border: 2px solid #4A90E2;
}
""", theme=gr.themes.Base()) as interface:
with gr.Column(elem_classes="container"):
gr.Markdown(f"# {title}")
gr.Markdown(description)
if not blackspot_ok:
gr.Markdown("""
β οΈ **Note:** Blackspot detection model not available.
To enable blackspot detection, upload the model to HuggingFace or ensure it's in the local directory.
""")
# First create a hidden image input that will be used by Examples
with gr.Row(visible=False):
image_input = gr.Image(
label="πΈ Upload Room Image",
type="filepath",
height=500
)
# Sample images section at the top with the actual clickable examples
with gr.Column(elem_classes="sample-section"):
gr.Markdown("### πΌοΈ Try Sample Images")
gr.Markdown("*Click any image below to load it for analysis or upload your own. || Then scroll down and click analyze environment*")
if sample_images_available:
gr.Examples(
examples=SAMPLE_IMAGES,
inputs=image_input,
label="",
examples_per_page=3
)
else:
gr.Markdown("*Sample images not found in samples/ directory*")
with gr.Row(elem_classes="controls-row"):
with gr.Column(scale=1):
enable_blackspot = gr.Checkbox(
value=blackspot_ok,
label="Enable Floor Blackspot Detection",
interactive=blackspot_ok
)
blackspot_threshold = gr.Slider(
minimum=0.1,
maximum=0.9,
value=0.5,
step=0.05,
label="Blackspot Sensitivity",
visible=blackspot_ok
)
with gr.Column(scale=1):
enable_contrast = gr.Checkbox(
value=True,
label="Enable Universal Contrast Analysis"
)
contrast_threshold = gr.Slider(
minimum=3.0,
maximum=7.0,
value=4.5,
step=0.1,
label="WCAG Contrast Threshold"
)
with gr.Row():
with gr.Column(scale=2):
# Now show the actual visible image input
image_input_display = gr.Image(
label="πΈ Upload Room Image",
type="filepath",
height=500
)
# Connect the hidden input to the visible one
image_input.change(
fn=lambda x: x,
inputs=image_input,
outputs=image_input_display
)
with gr.Column(scale=1):
analyze_button = gr.Button(
"π Analyze Environment",
variant="primary",
elem_classes="main-button"
)
gr.Markdown("---")
gr.Markdown("## π― Segmented Objects")
seg_display = gr.Image(
label=None,
interactive=False,
show_label=False,
elem_classes="image-output"
)
if blackspot_ok:
gr.Markdown("## β« Blackspot Detection")
blackspot_display = gr.Image(
label=None,
interactive=False,
show_label=False,
elem_classes="image-output"
)
else:
blackspot_display = gr.Image(visible=False)
gr.Markdown("## π¨ Contrast Analysis")
contrast_display = gr.Image(
label=None,
interactive=False,
show_label=False,
elem_classes="image-output"
)
gr.Markdown("---")
analysis_report = gr.Markdown(
value="Upload an image and click 'Analyze Environment' to begin.",
elem_classes="report-box"
)
# Use image_input_display for the analysis
analyze_button.click(
fn=analyze_wrapper,
inputs=[
image_input_display,
blackspot_threshold,
contrast_threshold,
enable_blackspot,
enable_contrast
],
outputs=[
seg_display,
blackspot_display,
contrast_display,
analysis_report
]
)
gr.Markdown("""
---
**NeuroNest** v2.0 - Enhanced with floor-only blackspot detection and universal contrast analysis
*Creating safer environments for cognitive health through AI*
""")
return interface
if __name__ == "__main__":
print(f"π Starting NeuroNest on {DEVICE}")
print(f"OneFormer available: {ONEFORMER_AVAILABLE}")
try:
interface = create_gradio_interface()
interface.queue(max_size=10).launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)
except Exception as e:
logger.error(f"Failed to launch application: {e}")
raise
|