import gradio as gr from huggingface_hub import InferenceClient # Define available models (update with your actual model IDs) model_list = { "Safe LM": "HuggingFaceH4/zephyr-7b-beta", # Replace with your Safe LM model ID "Baseline 1": "HuggingFaceH4/zephyr-7b-beta", "Another Model": "HuggingFaceH4/zephyr-7b-beta" } def respond(message, history, system_message, max_tokens, temperature, top_p, selected_model): try: # Create an InferenceClient for the selected model client = InferenceClient(model_list.get(selected_model, "HuggingFaceH4/zephyr-7b-beta")) # Build conversation messages for the client messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in history: if user_msg: # Only add non-empty messages messages.append({"role": "user", "content": user_msg}) if assistant_msg: # Only add non-empty messages messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) response = "" # Stream the response from the client for token_message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): # Safe extraction of token with error handling try: token = token_message.choices[0].delta.content if token is not None: # Handle potential None values response += token yield response except (AttributeError, IndexError) as e: # Handle cases where token structure might be different print(f"Error extracting token: {e}") continue except Exception as e: # Return error message if the model call fails print(f"Error calling model API: {e}") yield f"Sorry, there was an error: {str(e)}" # Custom CSS for styling css = """ body { background-color: #f0f5fb; /* Light pastel blue background */ } .gradio-container { background-color: white; border-radius: 16px; box-shadow: 0 2px 10px rgba(0,0,0,0.05); max-width: 90%; margin: 15px auto; padding-bottom: 20px; } /* Header styling with diagonal shield */ .app-header { position: relative; overflow: hidden; } .app-header::before { content: "🛡️"; position: absolute; font-size: 100px; opacity: 0.1; right: -20px; top: -30px; transform: rotate(15deg); pointer-events: none; } /* Simple styling for buttons */ #send-btn { background-color: white !important; color: #333 !important; border: 2px solid #e6c200 !important; } #send-btn:hover { background-color: #fff9e6 !important; } #clear-btn { background-color: white !important; color: #333 !important; border: 2px solid #e6c200 !important; } #clear-btn:hover { background-color: #fff9e6 !important; } /* Hide elements */ footer { display: none !important; } .footer { display: none !important; } """ with gr.Blocks(css=css) as demo: # Custom header with branding gr.HTML("""

🛡️ Safe Playground

Responsible AI for everyone

""") with gr.Row(): # Left sidebar: Model selector with gr.Column(scale=1): gr.Markdown("## Models") model_dropdown = gr.Dropdown( choices=list(model_list.keys()), label="Select Model", value="Safe LM", elem_classes=["model-select"] ) # Settings gr.Markdown("### Settings") system_message = gr.Textbox( value="You are a friendly and safe assistant.", label="System Message", lines=2 ) max_tokens_slider = gr.Slider( minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens" ) temperature_slider = gr.Slider( minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature" ) top_p_slider = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ) # Main area: Chat interface with gr.Column(scale=3): chatbot = gr.Chatbot( label="Conversation", show_label=True, height=400 ) with gr.Row(): user_input = gr.Textbox( placeholder="Type your message here...", label="Your Message", show_label=False, scale=9 ) send_button = gr.Button( "Send", scale=1, elem_id="send-btn" ) with gr.Row(): clear_button = gr.Button("Clear Chat", elem_id="clear-btn") # Fix 1: Correct event handling for the chatbot interface def user(user_message, history): # Return the user's message and add it to history # No emoji here since we'll add it during display return "", history + [[user_message, None]] def bot(history, system_message, max_tokens, temperature, top_p, selected_model): # Ensure there's history if not history or len(history) == 0: return history # Get the last user message from history user_message = history[-1][0] # Call respond function with the message response_generator = respond( user_message, history[:-1], # Pass history without the current message system_message, max_tokens, temperature, top_p, selected_model ) # Update history as responses come in for response in response_generator: history[-1][1] = response yield history # Add a function to display history with emojis def display_with_emojis(history): if history is None or len(history) == 0: return [] # Create a new history with emojis added history_with_emojis = [] for user_msg, assistant_msg in history: # Add the user emoji to the user message (only if it doesn't already have one) if user_msg: if not user_msg.startswith("👤 "): user_msg_with_emoji = f"👤 {user_msg}" else: user_msg_with_emoji = user_msg else: user_msg_with_emoji = user_msg # Add the assistant emoji to the assistant message (only if it doesn't already have one) if assistant_msg: if not assistant_msg.startswith("🛡️ "): assistant_msg_with_emoji = f"🛡️ {assistant_msg}" else: assistant_msg_with_emoji = assistant_msg else: assistant_msg_with_emoji = assistant_msg # Add the modified messages to the new history history_with_emojis.append([user_msg_with_emoji, assistant_msg_with_emoji]) return history_with_emojis # Wire up the event chain with emoji display user_input.submit( user, [user_input, chatbot], [user_input, chatbot], queue=False ).then( bot, [chatbot, system_message, max_tokens_slider, temperature_slider, top_p_slider, model_dropdown], [chatbot], queue=True ).then( display_with_emojis, # Add the emoji processing step [chatbot], [chatbot] ) send_button.click( user, [user_input, chatbot], [user_input, chatbot], queue=False ).then( bot, [chatbot, system_message, max_tokens_slider, temperature_slider, top_p_slider, model_dropdown], [chatbot], queue=True ).then( display_with_emojis, # Add the emoji processing step [chatbot], [chatbot] ) # Clear the chat history - using a proper function def clear_history(): return [] clear_button.click(clear_history, None, chatbot, queue=False) if __name__ == "__main__": demo.launch()