File size: 8,096 Bytes
a90f37e
 
 
2931efa
 
 
420b66d
2931efa
 
a90f37e
2931efa
856a204
 
 
 
fed3387
856a204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a90f37e
216da8f
2931efa
216da8f
 
6cac78c
216da8f
c169c98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216da8f
 
 
 
f53a587
 
 
216da8f
 
6cac78c
216da8f
 
 
 
31142c0
216da8f
 
31142c0
c169c98
33783bd
f545f9a
 
216da8f
 
 
33783bd
f545f9a
216da8f
 
72c3fa0
c169c98
008f45b
 
0bf931b
216da8f
72c3fa0
 
 
6cac78c
2931efa
 
 
 
 
 
 
6cac78c
 
 
 
 
 
 
 
 
 
 
 
c8bb8d4
6cac78c
 
 
 
 
 
 
 
 
2931efa
6cac78c
 
2931efa
6cac78c
 
 
fed3387
6cac78c
 
 
 
 
 
 
 
 
 
 
216da8f
6cac78c
 
2931efa
216da8f
6cac78c
579c644
6cac78c
fed3387
 
 
6cac78c
 
216da8f
856a204
 
216da8f
 
6cac78c
fed3387
 
 
 
 
 
 
 
 
 
 
 
216da8f
6cac78c
 
 
fed3387
6cac78c
 
 
 
 
 
216da8f
fed3387
6cac78c
fed3387
6cac78c
 
fed3387
6cac78c
 
 
 
 
 
 
 
856a204
 
6cac78c
 
2931efa
6cac78c
 
 
 
 
 
 
856a204
 
2931efa
 
579c644
856a204
 
 
 
a90f37e
 
f545f9a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import gradio as gr
from huggingface_hub import InferenceClient

# Define available models (update with your actual model IDs)
model_list = {
    "Safe LM": "HuggingFaceH4/zephyr-7b-beta",  # Replace with your Safe LM model ID
    "Baseline 1": "HuggingFaceH4/zephyr-7b-beta",
    "Another Model": "HuggingFaceH4/zephyr-7b-beta"
}

def respond(message, history, system_message, max_tokens, temperature, top_p, selected_model):
    try:
        # Create an InferenceClient for the selected model
        client = InferenceClient(model_list.get(selected_model, "HuggingFaceH4/zephyr-7b-beta"))
        
        # Build conversation messages for the client
        messages = [{"role": "system", "content": system_message}]
        for user_msg, assistant_msg in history:
            if user_msg:  # Only add non-empty messages
                messages.append({"role": "user", "content": user_msg})
            if assistant_msg:  # Only add non-empty messages
                messages.append({"role": "assistant", "content": assistant_msg})
        messages.append({"role": "user", "content": message})
        
        response = ""
        
        # Stream the response from the client
        for token_message in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        ):
            # Safe extraction of token with error handling
            try:
                token = token_message.choices[0].delta.content
                if token is not None:  # Handle potential None values
                    response += token
                    yield response
            except (AttributeError, IndexError) as e:
                # Handle cases where token structure might be different
                print(f"Error extracting token: {e}")
                continue
    except Exception as e:
        # Return error message if the model call fails
        print(f"Error calling model API: {e}")
        yield f"Sorry, there was an error: {str(e)}"

# Custom CSS for styling
css = """
body { 
    background-color: #f0f5fb; /* Light pastel blue background */
}
.gradio-container { 
    background-color: white;
    border-radius: 16px;
    box-shadow: 0 2px 10px rgba(0,0,0,0.05);
    max-width: 90%;
    margin: 15px auto;
    padding-bottom: 20px;
}
/* Header styling with diagonal shield */
.app-header {
    position: relative;
    overflow: hidden;
}
.app-header::before {
    content: "🛡️";
    position: absolute;
    font-size: 100px;
    opacity: 0.1;
    right: -20px;
    top: -30px;
    transform: rotate(15deg);
    pointer-events: none;
}
/* Simple styling for buttons */
#send-btn {
    background-color: white !important;
    color: #333 !important;
    border: 2px solid #e6c200 !important;
}
#send-btn:hover {
    background-color: #fff9e6 !important;
}
#clear-btn {
    background-color: white !important;
    color: #333 !important;
    border: 2px solid #e6c200 !important;
}
#clear-btn:hover {
    background-color: #fff9e6 !important;
}
/* Hide elements */
footer {
    display: none !important;
}
.footer {
    display: none !important;
}
"""

with gr.Blocks(css=css) as demo:
    # Custom header with branding
    gr.HTML("""
    <div class="app-header" style="background: linear-gradient(135deg, #4a90e2, #75c6ef); padding: 15px; border-radius: 16px 16px 0 0; color: white; border-bottom: 3px solid #e6c200;">
        <h1 style="font-size: 32px; font-weight: 600; margin: 0; display: flex; align-items: center; font-family: 'Palatino', serif;">
            <span style="margin-right: 10px; font-size: 32px;">🛡️</span>
            <span style="font-weight: 700; margin-right: 1px;">Safe</span>
            <span style="font-weight: 400; letter-spacing: 1px;">Playground</span>
        </h1>
    </div>
    """)
        
    with gr.Row():
        # Left sidebar: Model selector
        with gr.Column(scale=1):
            gr.Markdown("## Models")
            model_dropdown = gr.Dropdown(
                choices=list(model_list.keys()),
                label="Select Model",
                value="Safe LM",
                elem_classes=["model-select"]
            )
            
            # Settings
            gr.Markdown("### Settings")
            system_message = gr.Textbox(
                value="You are a friendly and safe assistant.",
                label="System Message",
                lines=2
            )
            max_tokens_slider = gr.Slider(
                minimum=1, maximum=2048, value=100, step=1, 
                label="Max New Tokens"
            )
            temperature_slider = gr.Slider(
                minimum=0.1, maximum=4.0, value=0.7, step=0.1, 
                label="Temperature"
            )
            top_p_slider = gr.Slider(
                minimum=0.1, maximum=1.0, value=0.95, step=0.05, 
                label="Top-p (nucleus sampling)"
            )
            
        # Main area: Chat interface
        with gr.Column(scale=3):
            chatbot = gr.Chatbot(
                label="Conversation", 
                show_label=True,
                height=400
            )
            with gr.Row():
                user_input = gr.Textbox(
                    placeholder="Type your message here...", 
                    label="Your Message",
                    show_label=False,
                    scale=9
                )
                send_button = gr.Button(
                    "Send", 
                    scale=1,
                    elem_id="send-btn"
                )
            
            with gr.Row():
                clear_button = gr.Button("Clear Chat", elem_id="clear-btn")
    
    # Define functions for chatbot interactions
    def user(user_message, history):
        # Add emoji to user message
        user_message_with_emoji = f"👤 {user_message}"
        return "", history + [[user_message_with_emoji, None]]
    
    def bot(history, system_message, max_tokens, temperature, top_p, selected_model):
        # Ensure there's history
        if not history or len(history) == 0:
            return history
            
        # Get the last user message from history
        user_message = history[-1][0]
        # Remove emoji for processing if present
        if user_message.startswith("👤 "):
            user_message = user_message[2:].strip()
        
        # Process previous history to clean emojis
        clean_history = []
        for h_user, h_bot in history[:-1]:
            if h_user and h_user.startswith("👤 "):
                h_user = h_user[2:].strip()
            if h_bot and h_bot.startswith("🛡️ "):
                h_bot = h_bot[2:].strip()
            clean_history.append([h_user, h_bot])
        
        # Call respond function with the message
        response_generator = respond(
            user_message, 
            clean_history,  # Pass clean history
            system_message, 
            max_tokens, 
            temperature, 
            top_p, 
            selected_model
        )
        
        # Update history as responses come in, adding emoji
        for response in response_generator:
            history[-1][1] = f"🛡️ {response}"
            yield history
    
    # Wire up the event chain
    user_input.submit(
        user,
        [user_input, chatbot],
        [user_input, chatbot],
        queue=False
    ).then(
        bot,
        [chatbot, system_message, max_tokens_slider, temperature_slider, top_p_slider, model_dropdown],
        [chatbot],
        queue=True
    )
    
    send_button.click(
        user,
        [user_input, chatbot],
        [user_input, chatbot],
        queue=False
    ).then(
        bot,
        [chatbot, system_message, max_tokens_slider, temperature_slider, top_p_slider, model_dropdown],
        [chatbot],
        queue=True
    )
    
    # Clear the chat history
    def clear_history():
        return []
    
    clear_button.click(clear_history, None, chatbot, queue=False)

if __name__ == "__main__":
    demo.launch()