Spaces:
Sleeping
Sleeping
File size: 8,096 Bytes
a90f37e 2931efa 420b66d 2931efa a90f37e 2931efa 856a204 fed3387 856a204 a90f37e 216da8f 2931efa 216da8f 6cac78c 216da8f c169c98 216da8f f53a587 216da8f 6cac78c 216da8f 31142c0 216da8f 31142c0 c169c98 33783bd f545f9a 216da8f 33783bd f545f9a 216da8f 72c3fa0 c169c98 008f45b 0bf931b 216da8f 72c3fa0 6cac78c 2931efa 6cac78c c8bb8d4 6cac78c 2931efa 6cac78c 2931efa 6cac78c fed3387 6cac78c 216da8f 6cac78c 2931efa 216da8f 6cac78c 579c644 6cac78c fed3387 6cac78c 216da8f 856a204 216da8f 6cac78c fed3387 216da8f 6cac78c fed3387 6cac78c 216da8f fed3387 6cac78c fed3387 6cac78c fed3387 6cac78c 856a204 6cac78c 2931efa 6cac78c 856a204 2931efa 579c644 856a204 a90f37e f545f9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import gradio as gr
from huggingface_hub import InferenceClient
# Define available models (update with your actual model IDs)
model_list = {
"Safe LM": "HuggingFaceH4/zephyr-7b-beta", # Replace with your Safe LM model ID
"Baseline 1": "HuggingFaceH4/zephyr-7b-beta",
"Another Model": "HuggingFaceH4/zephyr-7b-beta"
}
def respond(message, history, system_message, max_tokens, temperature, top_p, selected_model):
try:
# Create an InferenceClient for the selected model
client = InferenceClient(model_list.get(selected_model, "HuggingFaceH4/zephyr-7b-beta"))
# Build conversation messages for the client
messages = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in history:
if user_msg: # Only add non-empty messages
messages.append({"role": "user", "content": user_msg})
if assistant_msg: # Only add non-empty messages
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
response = ""
# Stream the response from the client
for token_message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
# Safe extraction of token with error handling
try:
token = token_message.choices[0].delta.content
if token is not None: # Handle potential None values
response += token
yield response
except (AttributeError, IndexError) as e:
# Handle cases where token structure might be different
print(f"Error extracting token: {e}")
continue
except Exception as e:
# Return error message if the model call fails
print(f"Error calling model API: {e}")
yield f"Sorry, there was an error: {str(e)}"
# Custom CSS for styling
css = """
body {
background-color: #f0f5fb; /* Light pastel blue background */
}
.gradio-container {
background-color: white;
border-radius: 16px;
box-shadow: 0 2px 10px rgba(0,0,0,0.05);
max-width: 90%;
margin: 15px auto;
padding-bottom: 20px;
}
/* Header styling with diagonal shield */
.app-header {
position: relative;
overflow: hidden;
}
.app-header::before {
content: "🛡️";
position: absolute;
font-size: 100px;
opacity: 0.1;
right: -20px;
top: -30px;
transform: rotate(15deg);
pointer-events: none;
}
/* Simple styling for buttons */
#send-btn {
background-color: white !important;
color: #333 !important;
border: 2px solid #e6c200 !important;
}
#send-btn:hover {
background-color: #fff9e6 !important;
}
#clear-btn {
background-color: white !important;
color: #333 !important;
border: 2px solid #e6c200 !important;
}
#clear-btn:hover {
background-color: #fff9e6 !important;
}
/* Hide elements */
footer {
display: none !important;
}
.footer {
display: none !important;
}
"""
with gr.Blocks(css=css) as demo:
# Custom header with branding
gr.HTML("""
<div class="app-header" style="background: linear-gradient(135deg, #4a90e2, #75c6ef); padding: 15px; border-radius: 16px 16px 0 0; color: white; border-bottom: 3px solid #e6c200;">
<h1 style="font-size: 32px; font-weight: 600; margin: 0; display: flex; align-items: center; font-family: 'Palatino', serif;">
<span style="margin-right: 10px; font-size: 32px;">🛡️</span>
<span style="font-weight: 700; margin-right: 1px;">Safe</span>
<span style="font-weight: 400; letter-spacing: 1px;">Playground</span>
</h1>
</div>
""")
with gr.Row():
# Left sidebar: Model selector
with gr.Column(scale=1):
gr.Markdown("## Models")
model_dropdown = gr.Dropdown(
choices=list(model_list.keys()),
label="Select Model",
value="Safe LM",
elem_classes=["model-select"]
)
# Settings
gr.Markdown("### Settings")
system_message = gr.Textbox(
value="You are a friendly and safe assistant.",
label="System Message",
lines=2
)
max_tokens_slider = gr.Slider(
minimum=1, maximum=2048, value=100, step=1,
label="Max New Tokens"
)
temperature_slider = gr.Slider(
minimum=0.1, maximum=4.0, value=0.7, step=0.1,
label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
label="Top-p (nucleus sampling)"
)
# Main area: Chat interface
with gr.Column(scale=3):
chatbot = gr.Chatbot(
label="Conversation",
show_label=True,
height=400
)
with gr.Row():
user_input = gr.Textbox(
placeholder="Type your message here...",
label="Your Message",
show_label=False,
scale=9
)
send_button = gr.Button(
"Send",
scale=1,
elem_id="send-btn"
)
with gr.Row():
clear_button = gr.Button("Clear Chat", elem_id="clear-btn")
# Define functions for chatbot interactions
def user(user_message, history):
# Add emoji to user message
user_message_with_emoji = f"👤 {user_message}"
return "", history + [[user_message_with_emoji, None]]
def bot(history, system_message, max_tokens, temperature, top_p, selected_model):
# Ensure there's history
if not history or len(history) == 0:
return history
# Get the last user message from history
user_message = history[-1][0]
# Remove emoji for processing if present
if user_message.startswith("👤 "):
user_message = user_message[2:].strip()
# Process previous history to clean emojis
clean_history = []
for h_user, h_bot in history[:-1]:
if h_user and h_user.startswith("👤 "):
h_user = h_user[2:].strip()
if h_bot and h_bot.startswith("🛡️ "):
h_bot = h_bot[2:].strip()
clean_history.append([h_user, h_bot])
# Call respond function with the message
response_generator = respond(
user_message,
clean_history, # Pass clean history
system_message,
max_tokens,
temperature,
top_p,
selected_model
)
# Update history as responses come in, adding emoji
for response in response_generator:
history[-1][1] = f"🛡️ {response}"
yield history
# Wire up the event chain
user_input.submit(
user,
[user_input, chatbot],
[user_input, chatbot],
queue=False
).then(
bot,
[chatbot, system_message, max_tokens_slider, temperature_slider, top_p_slider, model_dropdown],
[chatbot],
queue=True
)
send_button.click(
user,
[user_input, chatbot],
[user_input, chatbot],
queue=False
).then(
bot,
[chatbot, system_message, max_tokens_slider, temperature_slider, top_p_slider, model_dropdown],
[chatbot],
queue=True
)
# Clear the chat history
def clear_history():
return []
clear_button.click(clear_history, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch() |