Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,712 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import ast
|
| 3 |
+
import glob
|
| 4 |
+
import pickle
|
| 5 |
+
import traceback
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import gradio as gr
|
| 10 |
+
import numpy as np
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
basic_component_values = [None] * 6
|
| 14 |
+
leader_component_values = [None] * 5
|
| 15 |
+
|
| 16 |
+
def make_default_md_1():
|
| 17 |
+
leaderboard_md = f"""
|
| 18 |
+
# 🏆 LLM Arena in Russian: Leaderboard
|
| 19 |
+
"""
|
| 20 |
+
return leaderboard_md
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def make_default_md_2():
|
| 24 |
+
leaderboard_md = f"""
|
| 25 |
+
|
| 26 |
+
The LLM Arena platform is an open crowdsourcing platform for evaluating large language models (LLM) in Russian. We collect pairwise comparisons from people to rank LLMs using the Bradley-Terry model and display model ratings on the Elo scale.
|
| 27 |
+
Chatbot Arena in Russian depends on community participation, so please contribute by casting your vote!
|
| 28 |
+
|
| 29 |
+
- To **add your model** to the comparison, contact us on TG: [Group](https://t.me/+bFEOl-Bdmok4NGUy)
|
| 30 |
+
- If you **found a bug** or **have a suggestion**, contact us: [Roman](https://t.me/roman_kucev)
|
| 31 |
+
- You can contribute your vote at llmarena.ru!
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
return leaderboard_md
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def make_arena_leaderboard_md(arena_df, last_updated_time):
|
| 39 |
+
total_votes = sum(arena_df["num_battles"])
|
| 40 |
+
total_models = len(arena_df)
|
| 41 |
+
space = " "
|
| 42 |
+
|
| 43 |
+
leaderboard_md = f"""
|
| 44 |
+
Total # of models: **{total_models}**.{space} Total # of votes: **{"{:,}".format(total_votes)}**.{space} Last updated: {last_updated_time}.
|
| 45 |
+
|
| 46 |
+
***Rank (UB)**: model rating (upper bound), determined as one plus the number of models that are statistically better than the target model.
|
| 47 |
+
Model A is statistically better than Model B when the lower bound of Model A's rating is higher than the upper bound of Model B's rating (with a 95% confidence interval).
|
| 48 |
+
See Figure 1 below for a visualization of the confidence intervals of model ratings.
|
| 49 |
+
"""
|
| 50 |
+
return leaderboard_md
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="Overall"):
|
| 55 |
+
total_votes = sum(arena_df["num_battles"])
|
| 56 |
+
total_models = len(arena_df)
|
| 57 |
+
space = " "
|
| 58 |
+
total_subset_votes = sum(arena_subset_df["num_battles"])
|
| 59 |
+
total_subset_models = len(arena_subset_df)
|
| 60 |
+
leaderboard_md = f"""### {cat_name_to_explanation[name]}
|
| 61 |
+
#### {space} #models: **{total_subset_models} ({round(total_subset_models / total_models * 100)}%)** {space} #votes: **{"{:,}".format(total_subset_votes)} ({round(total_subset_votes / total_votes * 100)}%)**{space}
|
| 62 |
+
"""
|
| 63 |
+
return leaderboard_md
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def model_hyperlink(model_name, link):
|
| 68 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def load_leaderboard_table_csv(filename, add_hyperlink=True):
|
| 72 |
+
lines = open(filename).readlines()
|
| 73 |
+
heads = [v.strip() for v in lines[0].split(",")]
|
| 74 |
+
rows = []
|
| 75 |
+
for i in range(1, len(lines)):
|
| 76 |
+
row = [v.strip() for v in lines[i].split(",")]
|
| 77 |
+
for j in range(len(heads)):
|
| 78 |
+
item = {}
|
| 79 |
+
for h, v in zip(heads, row):
|
| 80 |
+
if h == "Arena Elo rating":
|
| 81 |
+
if v != "-":
|
| 82 |
+
v = int(ast.literal_eval(v))
|
| 83 |
+
else:
|
| 84 |
+
v = np.nan
|
| 85 |
+
elif h == "MMLU":
|
| 86 |
+
if v != "-":
|
| 87 |
+
v = round(ast.literal_eval(v) * 100, 1)
|
| 88 |
+
else:
|
| 89 |
+
v = np.nan
|
| 90 |
+
elif h == "MT-bench (win rate %)":
|
| 91 |
+
if v != "-":
|
| 92 |
+
v = round(ast.literal_eval(v[:-1]), 1)
|
| 93 |
+
else:
|
| 94 |
+
v = np.nan
|
| 95 |
+
elif h == "MT-bench (score)":
|
| 96 |
+
if v != "-":
|
| 97 |
+
v = round(ast.literal_eval(v), 2)
|
| 98 |
+
else:
|
| 99 |
+
v = np.nan
|
| 100 |
+
item[h] = v
|
| 101 |
+
if add_hyperlink:
|
| 102 |
+
item["Model"] = model_hyperlink(item["Model"], item["Link"])
|
| 103 |
+
rows.append(item)
|
| 104 |
+
|
| 105 |
+
return rows
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def create_ranking_str(ranking, ranking_difference):
|
| 109 |
+
if ranking_difference > 0:
|
| 110 |
+
return f"{int(ranking)} \u2191"
|
| 111 |
+
elif ranking_difference < 0:
|
| 112 |
+
return f"{int(ranking)} \u2193"
|
| 113 |
+
else:
|
| 114 |
+
return f"{int(ranking)}"
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def recompute_final_ranking(arena_df):
|
| 118 |
+
# compute ranking based on CI
|
| 119 |
+
ranking = {}
|
| 120 |
+
for i, model_a in enumerate(arena_df.index):
|
| 121 |
+
ranking[model_a] = 1
|
| 122 |
+
for j, model_b in enumerate(arena_df.index):
|
| 123 |
+
if i == j:
|
| 124 |
+
continue
|
| 125 |
+
if (
|
| 126 |
+
arena_df.loc[model_b]["rating_q025"]
|
| 127 |
+
> arena_df.loc[model_a]["rating_q975"]
|
| 128 |
+
):
|
| 129 |
+
ranking[model_a] += 1
|
| 130 |
+
return list(ranking.values())
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def get_arena_table(arena_df, model_table_df, arena_subset_df=None):
|
| 134 |
+
arena_df = arena_df.sort_values(
|
| 135 |
+
by=["final_ranking", "rating"], ascending=[True, False]
|
| 136 |
+
)
|
| 137 |
+
arena_df["final_ranking"] = recompute_final_ranking(arena_df)
|
| 138 |
+
arena_df = arena_df.sort_values(
|
| 139 |
+
by=["final_ranking", "rating"], ascending=[True, False]
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
# sort by rating
|
| 143 |
+
if arena_subset_df is not None:
|
| 144 |
+
# filter out models not in the arena_df
|
| 145 |
+
arena_subset_df = arena_subset_df[arena_subset_df.index.isin(arena_df.index)]
|
| 146 |
+
arena_subset_df = arena_subset_df.sort_values(by=["rating"], ascending=False)
|
| 147 |
+
arena_subset_df["final_ranking"] = recompute_final_ranking(arena_subset_df)
|
| 148 |
+
# keep only the models in the subset in arena_df and recompute final_ranking
|
| 149 |
+
arena_df = arena_df[arena_df.index.isin(arena_subset_df.index)]
|
| 150 |
+
# recompute final ranking
|
| 151 |
+
arena_df["final_ranking"] = recompute_final_ranking(arena_df)
|
| 152 |
+
|
| 153 |
+
# assign ranking by the order
|
| 154 |
+
arena_subset_df["final_ranking_no_tie"] = range(1, len(arena_subset_df) + 1)
|
| 155 |
+
arena_df["final_ranking_no_tie"] = range(1, len(arena_df) + 1)
|
| 156 |
+
# join arena_df and arena_subset_df on index
|
| 157 |
+
arena_df = arena_subset_df.join(
|
| 158 |
+
arena_df["final_ranking"], rsuffix="_global", how="inner"
|
| 159 |
+
)
|
| 160 |
+
arena_df["ranking_difference"] = (
|
| 161 |
+
arena_df["final_ranking_global"] - arena_df["final_ranking"]
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
arena_df = arena_df.sort_values(
|
| 165 |
+
by=["final_ranking", "rating"], ascending=[True, False]
|
| 166 |
+
)
|
| 167 |
+
arena_df["final_ranking"] = arena_df.apply(
|
| 168 |
+
lambda x: create_ranking_str(x["final_ranking"], x["ranking_difference"]),
|
| 169 |
+
axis=1,
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
arena_df["final_ranking"] = arena_df["final_ranking"].astype(str)
|
| 173 |
+
|
| 174 |
+
values = []
|
| 175 |
+
for i in range(len(arena_df)):
|
| 176 |
+
row = []
|
| 177 |
+
model_key = arena_df.index[i]
|
| 178 |
+
try:
|
| 179 |
+
model_name = model_table_df[model_table_df["key"] == model_key][
|
| 180 |
+
"Model"
|
| 181 |
+
].values[0]
|
| 182 |
+
ranking = arena_df.iloc[i].get("final_ranking") or i + 1
|
| 183 |
+
row.append(ranking)
|
| 184 |
+
if arena_subset_df is not None:
|
| 185 |
+
row.append(arena_df.iloc[i].get("ranking_difference") or 0)
|
| 186 |
+
row.append(model_name)
|
| 187 |
+
row.append(round(arena_df.iloc[i]["rating"]))
|
| 188 |
+
upper_diff = round(
|
| 189 |
+
arena_df.iloc[i]["rating_q975"] - arena_df.iloc[i]["rating"]
|
| 190 |
+
)
|
| 191 |
+
lower_diff = round(
|
| 192 |
+
arena_df.iloc[i]["rating"] - arena_df.iloc[i]["rating_q025"]
|
| 193 |
+
)
|
| 194 |
+
row.append(f"+{upper_diff}/-{lower_diff}")
|
| 195 |
+
row.append(round(arena_df.iloc[i]["num_battles"]))
|
| 196 |
+
row.append(
|
| 197 |
+
model_table_df[model_table_df["key"] == model_key][
|
| 198 |
+
"Organization"
|
| 199 |
+
].values[0]
|
| 200 |
+
)
|
| 201 |
+
row.append(
|
| 202 |
+
model_table_df[model_table_df["key"] == model_key]["License"].values[0]
|
| 203 |
+
)
|
| 204 |
+
cutoff_date = model_table_df[model_table_df["key"] == model_key][
|
| 205 |
+
"Knowledge cutoff date"
|
| 206 |
+
].values[0]
|
| 207 |
+
if cutoff_date == "-":
|
| 208 |
+
row.append("Unknown")
|
| 209 |
+
else:
|
| 210 |
+
row.append(cutoff_date)
|
| 211 |
+
values.append(row)
|
| 212 |
+
except Exception as e:
|
| 213 |
+
traceback.print_exc()
|
| 214 |
+
print(f"{model_key} - {e}")
|
| 215 |
+
return values
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
key_to_category_name = {
|
| 219 |
+
"full": "Overall",
|
| 220 |
+
"crowdsourcing/simple_prompts": "crowdsourcing/simple_prompts",
|
| 221 |
+
"site_visitors/medium_prompts": "site_visitors/medium_prompts",
|
| 222 |
+
"site_visitors/medium_prompts:style control": "site_visitors/medium_prompts:style control"
|
| 223 |
+
}
|
| 224 |
+
cat_name_to_explanation = {
|
| 225 |
+
"Overall": "All queries",
|
| 226 |
+
"crowdsourcing/simple_prompts": "Queries collected through crowdsourcing. Mostly simple ones.",
|
| 227 |
+
"site_visitors/medium_prompts": "Queries from website visitors. Contain more complex prompts.",
|
| 228 |
+
"site_visitors/medium_prompts:style control": "Queries from website visitors. Contain more complex prompts. [Reduced stylistic influence](https://lmsys.org/blog/2024-08-28-style-control/) of the response on the rating."
|
| 229 |
+
}
|
| 230 |
+
|
| 231 |
+
cat_name_to_baseline = {
|
| 232 |
+
"Hard Prompts (English)": "English",
|
| 233 |
+
}
|
| 234 |
+
|
| 235 |
+
actual_categories = [
|
| 236 |
+
"Overall",
|
| 237 |
+
"crowdsourcing/simple_prompts",
|
| 238 |
+
"site_visitors/medium_prompts",
|
| 239 |
+
"site_visitors/medium_prompts:style control"
|
| 240 |
+
]
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def read_elo_file(elo_results_file, leaderboard_table_file):
|
| 244 |
+
arena_dfs = {}
|
| 245 |
+
category_elo_results = {}
|
| 246 |
+
with open(elo_results_file, "rb") as fin:
|
| 247 |
+
elo_results = pickle.load(fin)
|
| 248 |
+
last_updated_time = None
|
| 249 |
+
if "full" in elo_results:
|
| 250 |
+
last_updated_time = elo_results["full"]["last_updated_datetime"].split(
|
| 251 |
+
" "
|
| 252 |
+
)[0]
|
| 253 |
+
for k in key_to_category_name.keys():
|
| 254 |
+
if k not in elo_results:
|
| 255 |
+
continue
|
| 256 |
+
arena_dfs[key_to_category_name[k]] = elo_results[k][
|
| 257 |
+
"leaderboard_table_df"
|
| 258 |
+
]
|
| 259 |
+
category_elo_results[key_to_category_name[k]] = elo_results[k]
|
| 260 |
+
|
| 261 |
+
data = load_leaderboard_table_csv(leaderboard_table_file)
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
model_table_df = pd.DataFrame(data)
|
| 265 |
+
|
| 266 |
+
return last_updated_time, arena_dfs, category_elo_results, elo_results, model_table_df
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def build_leaderboard_tab(
|
| 270 |
+
elo_results_file, leaderboard_table_file, show_plot=False, mirror=False
|
| 271 |
+
):
|
| 272 |
+
arena_dfs = {}
|
| 273 |
+
arena_df = pd.DataFrame()
|
| 274 |
+
category_elo_results = {}
|
| 275 |
+
|
| 276 |
+
last_updated_time, arena_dfs, category_elo_results, elo_results, model_table_df = read_elo_file(elo_results_file, leaderboard_table_file)
|
| 277 |
+
|
| 278 |
+
p1 = category_elo_results["Overall"]["win_fraction_heatmap"]
|
| 279 |
+
p2 = category_elo_results["Overall"]["battle_count_heatmap"]
|
| 280 |
+
p3 = category_elo_results["Overall"]["bootstrap_elo_rating"]
|
| 281 |
+
p4 = category_elo_results["Overall"]["average_win_rate_bar"]
|
| 282 |
+
arena_df = arena_dfs["Overall"]
|
| 283 |
+
default_md = make_default_md_1()
|
| 284 |
+
default_md_2 = make_default_md_2()
|
| 285 |
+
|
| 286 |
+
with gr.Row():
|
| 287 |
+
with gr.Column(scale=4):
|
| 288 |
+
md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
|
| 289 |
+
with gr.Column(scale=1):
|
| 290 |
+
vote_button = gr.Button("Vote!", link="https://llmarena.ru")
|
| 291 |
+
md_2 = gr.Markdown(default_md_2, elem_id="leaderboard_markdown")
|
| 292 |
+
|
| 293 |
+
if leaderboard_table_file:
|
| 294 |
+
data = load_leaderboard_table_csv(leaderboard_table_file)
|
| 295 |
+
|
| 296 |
+
model_table_df = pd.DataFrame(data)
|
| 297 |
+
|
| 298 |
+
with gr.Tabs() as tabs:
|
| 299 |
+
arena_table_vals = get_arena_table(arena_df, model_table_df)
|
| 300 |
+
|
| 301 |
+
with gr.Tab("Арена", id=0):
|
| 302 |
+
md = make_arena_leaderboard_md(arena_df, last_updated_time)
|
| 303 |
+
|
| 304 |
+
lb_description = gr.Markdown(md, elem_id="leaderboard_markdown")
|
| 305 |
+
with gr.Row():
|
| 306 |
+
with gr.Column(scale=2):
|
| 307 |
+
category_dropdown = gr.Dropdown(
|
| 308 |
+
choices=actual_categories,
|
| 309 |
+
label="Category",
|
| 310 |
+
value="Overall",
|
| 311 |
+
)
|
| 312 |
+
default_category_details = make_category_arena_leaderboard_md(
|
| 313 |
+
arena_df, arena_df, name="Overall"
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
with gr.Column(scale=4, variant="panel"):
|
| 317 |
+
category_deets = gr.Markdown(
|
| 318 |
+
default_category_details, elem_id="category_deets"
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
arena_vals = pd.DataFrame(
|
| 322 |
+
arena_table_vals,
|
| 323 |
+
columns=[
|
| 324 |
+
"Rank* (UB)",
|
| 325 |
+
"Model",
|
| 326 |
+
"Arena Elo",
|
| 327 |
+
"95% CI",
|
| 328 |
+
"Votes",
|
| 329 |
+
"Organization",
|
| 330 |
+
"License",
|
| 331 |
+
"Knowledge Cutoff",
|
| 332 |
+
],
|
| 333 |
+
)
|
| 334 |
+
elo_display_df = gr.Dataframe(
|
| 335 |
+
headers=[
|
| 336 |
+
"Rank* (UB)",
|
| 337 |
+
"Model",
|
| 338 |
+
"Arena Elo",
|
| 339 |
+
"95% CI",
|
| 340 |
+
"Votes",
|
| 341 |
+
"Organization",
|
| 342 |
+
"License",
|
| 343 |
+
"Knowledge Cutoff",
|
| 344 |
+
],
|
| 345 |
+
datatype=[
|
| 346 |
+
"str",
|
| 347 |
+
"markdown",
|
| 348 |
+
"number",
|
| 349 |
+
"str",
|
| 350 |
+
"number",
|
| 351 |
+
"str",
|
| 352 |
+
"str",
|
| 353 |
+
"str",
|
| 354 |
+
],
|
| 355 |
+
value=arena_vals.style,
|
| 356 |
+
elem_id="arena_leaderboard_dataframe",
|
| 357 |
+
height=700,
|
| 358 |
+
column_widths=[70, 190, 100, 100, 90, 130, 150, 100],
|
| 359 |
+
wrap=True,
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
gr.Markdown(
|
| 363 |
+
elem_id="leaderboard_markdown",
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
leader_component_values[:] = [default_md, p1, p2, p3, p4]
|
| 367 |
+
|
| 368 |
+
if show_plot:
|
| 369 |
+
more_stats_md = gr.Markdown(
|
| 370 |
+
f"""## More statistics on Chatbot Arena""",
|
| 371 |
+
elem_id="leaderboard_header_markdown",
|
| 372 |
+
)
|
| 373 |
+
with gr.Row():
|
| 374 |
+
with gr.Column():
|
| 375 |
+
gr.Markdown(
|
| 376 |
+
"#### Figure 1: Confidence Intervals on Model Strength (via Bootstrapping)",
|
| 377 |
+
elem_id="plot-title",
|
| 378 |
+
)
|
| 379 |
+
plot_3 = gr.Plot(p3, show_label=False)
|
| 380 |
+
with gr.Column():
|
| 381 |
+
gr.Markdown(
|
| 382 |
+
"#### Figure 2: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)",
|
| 383 |
+
elem_id="plot-title",
|
| 384 |
+
)
|
| 385 |
+
plot_4 = gr.Plot(p4, show_label=False)
|
| 386 |
+
with gr.Row():
|
| 387 |
+
with gr.Column():
|
| 388 |
+
gr.Markdown(
|
| 389 |
+
"#### Figure 3: Fraction of Model A Wins for All Non-tied A vs. B Battles",
|
| 390 |
+
elem_id="plot-title",
|
| 391 |
+
)
|
| 392 |
+
plot_1 = gr.Plot(
|
| 393 |
+
p1, show_label=False, elem_id="plot-container"
|
| 394 |
+
)
|
| 395 |
+
with gr.Column():
|
| 396 |
+
gr.Markdown(
|
| 397 |
+
"#### Figure 4: Battle Count for Each Combination of Models (without Ties)",
|
| 398 |
+
elem_id="plot-title",
|
| 399 |
+
)
|
| 400 |
+
plot_2 = gr.Plot(p2, show_label=False)
|
| 401 |
+
|
| 402 |
+
if not show_plot:
|
| 403 |
+
gr.Markdown(
|
| 404 |
+
"""
|
| 405 |
+
""",
|
| 406 |
+
elem_id="leaderboard_markdown",
|
| 407 |
+
)
|
| 408 |
+
else:
|
| 409 |
+
pass
|
| 410 |
+
|
| 411 |
+
def update_leaderboard_df(arena_table_vals):
|
| 412 |
+
elo_datarame = pd.DataFrame(
|
| 413 |
+
arena_table_vals,
|
| 414 |
+
columns=[
|
| 415 |
+
"Rank* (UB)",
|
| 416 |
+
"Delta",
|
| 417 |
+
"Model",
|
| 418 |
+
"Arena Elo",
|
| 419 |
+
"95% CI",
|
| 420 |
+
"Votes",
|
| 421 |
+
"Organization",
|
| 422 |
+
"License",
|
| 423 |
+
"Knowledge Cutoff",
|
| 424 |
+
],
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
def highlight_max(s):
|
| 428 |
+
return [
|
| 429 |
+
"color: green; font-weight: bold"
|
| 430 |
+
if "\u2191" in v
|
| 431 |
+
else "color: red; font-weight: bold"
|
| 432 |
+
if "\u2193" in v
|
| 433 |
+
else ""
|
| 434 |
+
for v in s
|
| 435 |
+
]
|
| 436 |
+
|
| 437 |
+
def highlight_rank_max(s):
|
| 438 |
+
return [
|
| 439 |
+
"color: green; font-weight: bold"
|
| 440 |
+
if v > 0
|
| 441 |
+
else "color: red; font-weight: bold"
|
| 442 |
+
if v < 0
|
| 443 |
+
else ""
|
| 444 |
+
for v in s
|
| 445 |
+
]
|
| 446 |
+
|
| 447 |
+
return elo_datarame.style.apply(highlight_max, subset=["Rank* (UB)"]).apply(
|
| 448 |
+
highlight_rank_max, subset=["Delta"]
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
def update_leaderboard_and_plots(category):
|
| 452 |
+
_, arena_dfs, category_elo_results, _ , model_table_df = read_elo_file(elo_results_file, leaderboard_table_file)
|
| 453 |
+
|
| 454 |
+
arena_subset_df = arena_dfs[category]
|
| 455 |
+
arena_subset_df = arena_subset_df[arena_subset_df["num_battles"] > 300]
|
| 456 |
+
elo_subset_results = category_elo_results[category]
|
| 457 |
+
|
| 458 |
+
baseline_category = cat_name_to_baseline.get(category, "Overall")
|
| 459 |
+
arena_df = arena_dfs[baseline_category]
|
| 460 |
+
arena_values = get_arena_table(
|
| 461 |
+
arena_df,
|
| 462 |
+
model_table_df,
|
| 463 |
+
arena_subset_df=arena_subset_df if category != "Overall" else None,
|
| 464 |
+
)
|
| 465 |
+
if category != "Overall":
|
| 466 |
+
arena_values = update_leaderboard_df(arena_values)
|
| 467 |
+
arena_values = gr.Dataframe(
|
| 468 |
+
headers=[
|
| 469 |
+
"Rank* (UB)",
|
| 470 |
+
"Delta",
|
| 471 |
+
"Model",
|
| 472 |
+
"Arena Elo",
|
| 473 |
+
"95% CI",
|
| 474 |
+
"Votes",
|
| 475 |
+
"Organization",
|
| 476 |
+
"License",
|
| 477 |
+
"Knowledge Cutoff",
|
| 478 |
+
],
|
| 479 |
+
datatype=[
|
| 480 |
+
"str",
|
| 481 |
+
"number",
|
| 482 |
+
"markdown",
|
| 483 |
+
"number",
|
| 484 |
+
"str",
|
| 485 |
+
"number",
|
| 486 |
+
"str",
|
| 487 |
+
"str",
|
| 488 |
+
"str",
|
| 489 |
+
],
|
| 490 |
+
value=arena_values,
|
| 491 |
+
elem_id="arena_leaderboard_dataframe",
|
| 492 |
+
height=700,
|
| 493 |
+
column_widths=[70, 70, 200, 90, 100, 90, 120, 150, 100],
|
| 494 |
+
wrap=True,
|
| 495 |
+
)
|
| 496 |
+
else:
|
| 497 |
+
arena_values = gr.Dataframe(
|
| 498 |
+
headers=[
|
| 499 |
+
"Rank* (UB)",
|
| 500 |
+
"Model",
|
| 501 |
+
"Arena Elo",
|
| 502 |
+
"95% CI",
|
| 503 |
+
"Votes",
|
| 504 |
+
"Organization",
|
| 505 |
+
"License",
|
| 506 |
+
"Knowledge Cutoff",
|
| 507 |
+
],
|
| 508 |
+
datatype=[
|
| 509 |
+
"str",
|
| 510 |
+
"markdown",
|
| 511 |
+
"number",
|
| 512 |
+
"str",
|
| 513 |
+
"number",
|
| 514 |
+
"str",
|
| 515 |
+
"str",
|
| 516 |
+
"str",
|
| 517 |
+
],
|
| 518 |
+
value=arena_values,
|
| 519 |
+
elem_id="arena_leaderboard_dataframe",
|
| 520 |
+
height=700,
|
| 521 |
+
column_widths=[70, 190, 100, 100, 90, 140, 150, 100],
|
| 522 |
+
wrap=True,
|
| 523 |
+
)
|
| 524 |
+
|
| 525 |
+
p1 = elo_subset_results["win_fraction_heatmap"]
|
| 526 |
+
p2 = elo_subset_results["battle_count_heatmap"]
|
| 527 |
+
p3 = elo_subset_results["bootstrap_elo_rating"]
|
| 528 |
+
p4 = elo_subset_results["average_win_rate_bar"]
|
| 529 |
+
more_stats_md = f"""## More Statistics for Chatbot Arena - {category}
|
| 530 |
+
"""
|
| 531 |
+
leaderboard_md = make_category_arena_leaderboard_md(
|
| 532 |
+
arena_df, arena_subset_df, name=category
|
| 533 |
+
)
|
| 534 |
+
return arena_values, p1, p2, p3, p4, more_stats_md, leaderboard_md
|
| 535 |
+
|
| 536 |
+
if leaderboard_table_file:
|
| 537 |
+
category_dropdown.change(
|
| 538 |
+
fn=update_leaderboard_and_plots,
|
| 539 |
+
inputs=[category_dropdown],
|
| 540 |
+
outputs=[
|
| 541 |
+
elo_display_df,
|
| 542 |
+
plot_1,
|
| 543 |
+
plot_2,
|
| 544 |
+
plot_3,
|
| 545 |
+
plot_4,
|
| 546 |
+
more_stats_md,
|
| 547 |
+
category_deets,
|
| 548 |
+
],
|
| 549 |
+
)
|
| 550 |
+
if show_plot and leaderboard_table_file:
|
| 551 |
+
return [md_1, md_2, lb_description, category_deets, elo_display_df, plot_1, plot_2, plot_3, plot_4]
|
| 552 |
+
return [md_1]
|
| 553 |
+
|
| 554 |
+
|
| 555 |
+
def build_demo(elo_results_file, leaderboard_table_file):
|
| 556 |
+
text_size = gr.themes.sizes.text_lg
|
| 557 |
+
theme = gr.themes.Default.load("theme.json")
|
| 558 |
+
theme.text_size = text_size
|
| 559 |
+
theme.set(
|
| 560 |
+
button_large_text_size="40px",
|
| 561 |
+
button_small_text_size="40px",
|
| 562 |
+
button_large_text_weight="1000",
|
| 563 |
+
button_small_text_weight="1000",
|
| 564 |
+
button_shadow="*shadow_drop_lg",
|
| 565 |
+
button_shadow_hover="*shadow_drop_lg",
|
| 566 |
+
checkbox_label_shadow="*shadow_drop_lg",
|
| 567 |
+
button_shadow_active="*shadow_inset",
|
| 568 |
+
button_secondary_background_fill="*primary_300",
|
| 569 |
+
button_secondary_background_fill_dark="*primary_700",
|
| 570 |
+
button_secondary_background_fill_hover="*primary_200",
|
| 571 |
+
button_secondary_background_fill_hover_dark="*primary_500",
|
| 572 |
+
button_secondary_text_color="*primary_800",
|
| 573 |
+
button_secondary_text_color_dark="white",
|
| 574 |
+
)
|
| 575 |
+
|
| 576 |
+
with gr.Blocks(
|
| 577 |
+
title="LLM arena: leaderboard",
|
| 578 |
+
theme=theme,
|
| 579 |
+
css=block_css,
|
| 580 |
+
) as demo:
|
| 581 |
+
build_leaderboard_tab(
|
| 582 |
+
elo_results_file, leaderboard_table_file, show_plot=True, mirror=True
|
| 583 |
+
)
|
| 584 |
+
return demo
|
| 585 |
+
|
| 586 |
+
block_css = """
|
| 587 |
+
#notice_markdown .prose {
|
| 588 |
+
font-size: 110% !important;
|
| 589 |
+
}
|
| 590 |
+
#notice_markdown th {
|
| 591 |
+
display: none;
|
| 592 |
+
}
|
| 593 |
+
#notice_markdown td {
|
| 594 |
+
padding-top: 6px;
|
| 595 |
+
padding-bottom: 6px;
|
| 596 |
+
}
|
| 597 |
+
#arena_leaderboard_dataframe table {
|
| 598 |
+
font-size: 110%;
|
| 599 |
+
}
|
| 600 |
+
#full_leaderboard_dataframe table {
|
| 601 |
+
font-size: 110%;
|
| 602 |
+
}
|
| 603 |
+
#model_description_markdown {
|
| 604 |
+
font-size: 110% !important;
|
| 605 |
+
}
|
| 606 |
+
#leaderboard_markdown .prose {
|
| 607 |
+
font-size: 110% !important;
|
| 608 |
+
}
|
| 609 |
+
#leaderboard_markdown td {
|
| 610 |
+
padding-top: 6px;
|
| 611 |
+
padding-bottom: 6px;
|
| 612 |
+
}
|
| 613 |
+
#leaderboard_dataframe td {
|
| 614 |
+
line-height: 0.1em;
|
| 615 |
+
}
|
| 616 |
+
#about_markdown .prose {
|
| 617 |
+
font-size: 110% !important;
|
| 618 |
+
}
|
| 619 |
+
#ack_markdown .prose {
|
| 620 |
+
font-size: 110% !important;
|
| 621 |
+
}
|
| 622 |
+
#chatbot .prose {
|
| 623 |
+
font-size: 105% !important;
|
| 624 |
+
}
|
| 625 |
+
.sponsor-image-about img {
|
| 626 |
+
margin: 0 20px;
|
| 627 |
+
margin-top: 20px;
|
| 628 |
+
height: 40px;
|
| 629 |
+
max-height: 100%;
|
| 630 |
+
width: auto;
|
| 631 |
+
float: left;
|
| 632 |
+
}
|
| 633 |
+
|
| 634 |
+
.chatbot h1, h2, h3 {
|
| 635 |
+
margin-top: 8px; /* Adjust the value as needed */
|
| 636 |
+
margin-bottom: 0px; /* Adjust the value as needed */
|
| 637 |
+
padding-bottom: 0px;
|
| 638 |
+
}
|
| 639 |
+
|
| 640 |
+
.chatbot h1 {
|
| 641 |
+
font-size: 130%;
|
| 642 |
+
}
|
| 643 |
+
.chatbot h2 {
|
| 644 |
+
font-size: 120%;
|
| 645 |
+
}
|
| 646 |
+
.chatbot h3 {
|
| 647 |
+
font-size: 110%;
|
| 648 |
+
}
|
| 649 |
+
.chatbot p:not(:first-child) {
|
| 650 |
+
margin-top: 8px;
|
| 651 |
+
}
|
| 652 |
+
|
| 653 |
+
.typing {
|
| 654 |
+
display: inline-block;
|
| 655 |
+
}
|
| 656 |
+
|
| 657 |
+
.cursor {
|
| 658 |
+
display: inline-block;
|
| 659 |
+
width: 7px;
|
| 660 |
+
height: 1em;
|
| 661 |
+
background-color: black;
|
| 662 |
+
vertical-align: middle;
|
| 663 |
+
animation: blink 1s infinite;
|
| 664 |
+
}
|
| 665 |
+
|
| 666 |
+
.dark .cursor {
|
| 667 |
+
display: inline-block;
|
| 668 |
+
width: 7px;
|
| 669 |
+
height: 1em;
|
| 670 |
+
background-color: white;
|
| 671 |
+
vertical-align: middle;
|
| 672 |
+
animation: blink 1s infinite;
|
| 673 |
+
}
|
| 674 |
+
|
| 675 |
+
@keyframes blink {
|
| 676 |
+
0%, 50% { opacity: 1; }
|
| 677 |
+
50.1%, 100% { opacity: 0; }
|
| 678 |
+
}
|
| 679 |
+
|
| 680 |
+
.app {
|
| 681 |
+
max-width: 100% !important;
|
| 682 |
+
padding: 20px !important;
|
| 683 |
+
}
|
| 684 |
+
|
| 685 |
+
a {
|
| 686 |
+
color: #1976D2; /* Your current link color, a shade of blue */
|
| 687 |
+
text-decoration: none; /* Removes underline from links */
|
| 688 |
+
}
|
| 689 |
+
a:hover {
|
| 690 |
+
color: #63A4FF; /* This can be any color you choose for hover */
|
| 691 |
+
text-decoration: underline; /* Adds underline on hover */
|
| 692 |
+
}
|
| 693 |
+
"""
|
| 694 |
+
|
| 695 |
+
|
| 696 |
+
if __name__ == "__main__":
|
| 697 |
+
parser = argparse.ArgumentParser()
|
| 698 |
+
parser.add_argument("--share", action="store_true")
|
| 699 |
+
parser.add_argument("--host", default="0.0.0.0")
|
| 700 |
+
parser.add_argument("--port", type=int, default=7860)
|
| 701 |
+
args = parser.parse_args()
|
| 702 |
+
|
| 703 |
+
elo_result_files = glob.glob("elo_results_*.pkl")
|
| 704 |
+
elo_result_files.sort(key=lambda x: int(x[12:-4]))
|
| 705 |
+
elo_result_file = elo_result_files[-1]
|
| 706 |
+
|
| 707 |
+
leaderboard_table_files = glob.glob("leaderboard_table_*.csv")
|
| 708 |
+
leaderboard_table_files.sort(key=lambda x: int(x[18:-4]))
|
| 709 |
+
leaderboard_table_file = leaderboard_table_files[-1]
|
| 710 |
+
|
| 711 |
+
demo = build_demo(elo_result_file, leaderboard_table_file)
|
| 712 |
+
demo.launch(show_api=False)
|