Spaces:
Running
Running
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| import contextlib | |
| import math | |
| import warnings | |
| from pathlib import Path | |
| import cv2 | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import torch | |
| from PIL import Image, ImageDraw, ImageFont | |
| from PIL import __version__ as pil_version | |
| from scipy.ndimage import gaussian_filter1d | |
| from ultralytics.utils import LOGGER, TryExcept, plt_settings, threaded | |
| from .checks import check_font, check_version, is_ascii | |
| from .files import increment_path | |
| from .ops import clip_boxes, scale_image, xywh2xyxy, xyxy2xywh | |
| class Colors: | |
| """Ultralytics default color palette https://ultralytics.com/. | |
| This class provides methods to work with the Ultralytics color palette, including converting hex color codes to | |
| RGB values. | |
| Attributes: | |
| palette (list of tuple): List of RGB color values. | |
| n (int): The number of colors in the palette. | |
| pose_palette (np.array): A specific color palette array with dtype np.uint8. | |
| """ | |
| def __init__(self): | |
| """Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values().""" | |
| hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB', | |
| '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7') | |
| self.palette = [self.hex2rgb(f'#{c}') for c in hexs] | |
| self.n = len(self.palette) | |
| self.pose_palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102], [230, 230, 0], [255, 153, 255], | |
| [153, 204, 255], [255, 102, 255], [255, 51, 255], [102, 178, 255], [51, 153, 255], | |
| [255, 153, 153], [255, 102, 102], [255, 51, 51], [153, 255, 153], [102, 255, 102], | |
| [51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0], [255, 255, 255]], | |
| dtype=np.uint8) | |
| def __call__(self, i, bgr=False): | |
| """Converts hex color codes to RGB values.""" | |
| c = self.palette[int(i) % self.n] | |
| return (c[2], c[1], c[0]) if bgr else c | |
| def hex2rgb(h): | |
| """Converts hex color codes to RGB values (i.e. default PIL order).""" | |
| return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) | |
| colors = Colors() # create instance for 'from utils.plots import colors' | |
| class Annotator: | |
| """Ultralytics Annotator for train/val mosaics and JPGs and predictions annotations. | |
| Attributes: | |
| im (Image.Image or numpy array): The image to annotate. | |
| pil (bool): Whether to use PIL or cv2 for drawing annotations. | |
| font (ImageFont.truetype or ImageFont.load_default): Font used for text annotations. | |
| lw (float): Line width for drawing. | |
| skeleton (List[List[int]]): Skeleton structure for keypoints. | |
| limb_color (List[int]): Color palette for limbs. | |
| kpt_color (List[int]): Color palette for keypoints. | |
| """ | |
| def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'): | |
| """Initialize the Annotator class with image and line width along with color palette for keypoints and limbs.""" | |
| assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.' | |
| non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic | |
| self.pil = pil or non_ascii | |
| if self.pil: # use PIL | |
| self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) | |
| self.draw = ImageDraw.Draw(self.im) | |
| try: | |
| font = check_font('Arial.Unicode.ttf' if non_ascii else font) | |
| size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12) | |
| self.font = ImageFont.truetype(str(font), size) | |
| except Exception: | |
| self.font = ImageFont.load_default() | |
| # Deprecation fix for w, h = getsize(string) -> _, _, w, h = getbox(string) | |
| if check_version(pil_version, '9.2.0'): | |
| self.font.getsize = lambda x: self.font.getbbox(x)[2:4] # text width, height | |
| else: # use cv2 | |
| self.im = im | |
| self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width | |
| # Pose | |
| self.skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12], [7, 13], [6, 7], [6, 8], [7, 9], | |
| [8, 10], [9, 11], [2, 3], [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]] | |
| self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]] | |
| self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]] | |
| def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)): | |
| """Add one xyxy box to image with label.""" | |
| if isinstance(box, torch.Tensor): | |
| box = box.tolist() | |
| if self.pil or not is_ascii(label): | |
| self.draw.rectangle(box, width=self.lw, outline=color) # box | |
| if label: | |
| w, h = self.font.getsize(label) # text width, height | |
| outside = box[1] - h >= 0 # label fits outside box | |
| self.draw.rectangle( | |
| (box[0], box[1] - h if outside else box[1], box[0] + w + 1, | |
| box[1] + 1 if outside else box[1] + h + 1), | |
| fill=color, | |
| ) | |
| # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0 | |
| self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font) | |
| else: # cv2 | |
| p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3])) | |
| cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA) | |
| if label: | |
| tf = max(self.lw - 1, 1) # font thickness | |
| w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height | |
| outside = p1[1] - h >= 3 | |
| p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3 | |
| cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled | |
| cv2.putText(self.im, | |
| label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), | |
| 0, | |
| self.lw / 3, | |
| txt_color, | |
| thickness=tf, | |
| lineType=cv2.LINE_AA) | |
| def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False): | |
| """Plot masks at once. | |
| Args: | |
| masks (tensor): predicted masks on cuda, shape: [n, h, w] | |
| colors (List[List[Int]]): colors for predicted masks, [[r, g, b] * n] | |
| im_gpu (tensor): img is in cuda, shape: [3, h, w], range: [0, 1] | |
| alpha (float): mask transparency: 0.0 fully transparent, 1.0 opaque | |
| """ | |
| if self.pil: | |
| # Convert to numpy first | |
| self.im = np.asarray(self.im).copy() | |
| if len(masks) == 0: | |
| self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255 | |
| if im_gpu.device != masks.device: | |
| im_gpu = im_gpu.to(masks.device) | |
| colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0 # shape(n,3) | |
| colors = colors[:, None, None] # shape(n,1,1,3) | |
| masks = masks.unsqueeze(3) # shape(n,h,w,1) | |
| masks_color = masks * (colors * alpha) # shape(n,h,w,3) | |
| inv_alph_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1) | |
| mcs = masks_color.max(dim=0).values # shape(n,h,w,3) | |
| im_gpu = im_gpu.flip(dims=[0]) # flip channel | |
| im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3) | |
| im_gpu = im_gpu * inv_alph_masks[-1] + mcs | |
| im_mask = (im_gpu * 255) | |
| im_mask_np = im_mask.byte().cpu().numpy() | |
| self.im[:] = im_mask_np if retina_masks else scale_image(im_mask_np, self.im.shape) | |
| if self.pil: | |
| # Convert im back to PIL and update draw | |
| self.fromarray(self.im) | |
| def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True): | |
| """Plot keypoints on the image. | |
| Args: | |
| kpts (tensor): Predicted keypoints with shape [17, 3]. Each keypoint has (x, y, confidence). | |
| shape (tuple): Image shape as a tuple (h, w), where h is the height and w is the width. | |
| radius (int, optional): Radius of the drawn keypoints. Default is 5. | |
| kpt_line (bool, optional): If True, the function will draw lines connecting keypoints | |
| for human pose. Default is True. | |
| Note: `kpt_line=True` currently only supports human pose plotting. | |
| """ | |
| if self.pil: | |
| # Convert to numpy first | |
| self.im = np.asarray(self.im).copy() | |
| nkpt, ndim = kpts.shape | |
| is_pose = nkpt == 17 and ndim == 3 | |
| kpt_line &= is_pose # `kpt_line=True` for now only supports human pose plotting | |
| for i, k in enumerate(kpts): | |
| color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i) | |
| x_coord, y_coord = k[0], k[1] | |
| if x_coord % shape[1] != 0 and y_coord % shape[0] != 0: | |
| if len(k) == 3: | |
| conf = k[2] | |
| if conf < 0.5: | |
| continue | |
| cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA) | |
| if kpt_line: | |
| ndim = kpts.shape[-1] | |
| for i, sk in enumerate(self.skeleton): | |
| pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1])) | |
| pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1])) | |
| if ndim == 3: | |
| conf1 = kpts[(sk[0] - 1), 2] | |
| conf2 = kpts[(sk[1] - 1), 2] | |
| if conf1 < 0.5 or conf2 < 0.5: | |
| continue | |
| if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0: | |
| continue | |
| if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0: | |
| continue | |
| cv2.line(self.im, pos1, pos2, [int(x) for x in self.limb_color[i]], thickness=2, lineType=cv2.LINE_AA) | |
| if self.pil: | |
| # Convert im back to PIL and update draw | |
| self.fromarray(self.im) | |
| def rectangle(self, xy, fill=None, outline=None, width=1): | |
| """Add rectangle to image (PIL-only).""" | |
| self.draw.rectangle(xy, fill, outline, width) | |
| def text(self, xy, text, txt_color=(255, 255, 255), anchor='top', box_style=False): | |
| """Adds text to an image using PIL or cv2.""" | |
| if anchor == 'bottom': # start y from font bottom | |
| w, h = self.font.getsize(text) # text width, height | |
| xy[1] += 1 - h | |
| if self.pil: | |
| if box_style: | |
| w, h = self.font.getsize(text) | |
| self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color) | |
| # Using `txt_color` for background and draw fg with white color | |
| txt_color = (255, 255, 255) | |
| if '\n' in text: | |
| lines = text.split('\n') | |
| _, h = self.font.getsize(text) | |
| for line in lines: | |
| self.draw.text(xy, line, fill=txt_color, font=self.font) | |
| xy[1] += h | |
| else: | |
| self.draw.text(xy, text, fill=txt_color, font=self.font) | |
| else: | |
| if box_style: | |
| tf = max(self.lw - 1, 1) # font thickness | |
| w, h = cv2.getTextSize(text, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height | |
| outside = xy[1] - h >= 3 | |
| p2 = xy[0] + w, xy[1] - h - 3 if outside else xy[1] + h + 3 | |
| cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA) # filled | |
| # Using `txt_color` for background and draw fg with white color | |
| txt_color = (255, 255, 255) | |
| tf = max(self.lw - 1, 1) # font thickness | |
| cv2.putText(self.im, text, xy, 0, self.lw / 3, txt_color, thickness=tf, lineType=cv2.LINE_AA) | |
| def fromarray(self, im): | |
| """Update self.im from a numpy array.""" | |
| self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) | |
| self.draw = ImageDraw.Draw(self.im) | |
| def result(self): | |
| """Return annotated image as array.""" | |
| return np.asarray(self.im) | |
| # known issue https://github.com/ultralytics/yolov5/issues/5395 | |
| def plot_labels(boxes, cls, names=(), save_dir=Path(''), on_plot=None): | |
| """Save and plot image with no axis or spines.""" | |
| import pandas as pd | |
| import seaborn as sn | |
| # Filter matplotlib>=3.7.2 warning | |
| warnings.filterwarnings('ignore', category=UserWarning, message='The figure layout has changed to tight') | |
| # Plot dataset labels | |
| LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ") | |
| b = boxes.transpose() # classes, boxes | |
| nc = int(cls.max() + 1) # number of classes | |
| x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height']) | |
| # Seaborn correlogram | |
| sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9)) | |
| plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200) | |
| plt.close() | |
| # Matplotlib labels | |
| ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel() | |
| y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) | |
| with contextlib.suppress(Exception): # color histogram bars by class | |
| [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195 | |
| ax[0].set_ylabel('instances') | |
| if 0 < len(names) < 30: | |
| ax[0].set_xticks(range(len(names))) | |
| ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10) | |
| else: | |
| ax[0].set_xlabel('classes') | |
| sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9) | |
| sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9) | |
| # Rectangles | |
| boxes[:, 0:2] = 0.5 # center | |
| boxes = xywh2xyxy(boxes) * 1000 | |
| img = Image.fromarray(np.ones((1000, 1000, 3), dtype=np.uint8) * 255) | |
| for cls, box in zip(cls[:500], boxes[:500]): | |
| ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot | |
| ax[1].imshow(img) | |
| ax[1].axis('off') | |
| for a in [0, 1, 2, 3]: | |
| for s in ['top', 'right', 'left', 'bottom']: | |
| ax[a].spines[s].set_visible(False) | |
| fname = save_dir / 'labels.jpg' | |
| plt.savefig(fname, dpi=200) | |
| plt.close() | |
| if on_plot: | |
| on_plot(fname) | |
| def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True): | |
| """Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop. | |
| This function takes a bounding box and an image, and then saves a cropped portion of the image according | |
| to the bounding box. Optionally, the crop can be squared, and the function allows for gain and padding | |
| adjustments to the bounding box. | |
| Args: | |
| xyxy (torch.Tensor or list): A tensor or list representing the bounding box in xyxy format. | |
| im (numpy.ndarray): The input image. | |
| file (Path, optional): The path where the cropped image will be saved. Defaults to 'im.jpg'. | |
| gain (float, optional): A multiplicative factor to increase the size of the bounding box. Defaults to 1.02. | |
| pad (int, optional): The number of pixels to add to the width and height of the bounding box. Defaults to 10. | |
| square (bool, optional): If True, the bounding box will be transformed into a square. Defaults to False. | |
| BGR (bool, optional): If True, the image will be saved in BGR format, otherwise in RGB. Defaults to False. | |
| save (bool, optional): If True, the cropped image will be saved to disk. Defaults to True. | |
| Returns: | |
| (numpy.ndarray): The cropped image. | |
| Example: | |
| ```python | |
| from ultralytics.utils.plotting import save_one_box | |
| xyxy = [50, 50, 150, 150] | |
| im = cv2.imread('image.jpg') | |
| cropped_im = save_one_box(xyxy, im, file='cropped.jpg', square=True) | |
| ``` | |
| """ | |
| if not isinstance(xyxy, torch.Tensor): # may be list | |
| xyxy = torch.stack(xyxy) | |
| b = xyxy2xywh(xyxy.view(-1, 4)) # boxes | |
| if square: | |
| b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square | |
| b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad | |
| xyxy = xywh2xyxy(b).long() | |
| clip_boxes(xyxy, im.shape) | |
| crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)] | |
| if save: | |
| file.parent.mkdir(parents=True, exist_ok=True) # make directory | |
| f = str(increment_path(file).with_suffix('.jpg')) | |
| # cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue | |
| Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB | |
| return crop | |
| def plot_images(images, | |
| batch_idx, | |
| cls, | |
| bboxes=np.zeros(0, dtype=np.float32), | |
| masks=np.zeros(0, dtype=np.uint8), | |
| kpts=np.zeros((0, 51), dtype=np.float32), | |
| paths=None, | |
| fname='images.jpg', | |
| names=None, | |
| on_plot=None): | |
| """Plot image grid with labels.""" | |
| if isinstance(images, torch.Tensor): | |
| images = images.cpu().float().numpy() | |
| if isinstance(cls, torch.Tensor): | |
| cls = cls.cpu().numpy() | |
| if isinstance(bboxes, torch.Tensor): | |
| bboxes = bboxes.cpu().numpy() | |
| if isinstance(masks, torch.Tensor): | |
| masks = masks.cpu().numpy().astype(int) | |
| if isinstance(kpts, torch.Tensor): | |
| kpts = kpts.cpu().numpy() | |
| if isinstance(batch_idx, torch.Tensor): | |
| batch_idx = batch_idx.cpu().numpy() | |
| max_size = 1920 # max image size | |
| max_subplots = 16 # max image subplots, i.e. 4x4 | |
| bs, _, h, w = images.shape # batch size, _, height, width | |
| bs = min(bs, max_subplots) # limit plot images | |
| ns = np.ceil(bs ** 0.5) # number of subplots (square) | |
| if np.max(images[0]) <= 1: | |
| images *= 255 # de-normalise (optional) | |
| # Build Image | |
| mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init | |
| for i, im in enumerate(images): | |
| if i == max_subplots: # if last batch has fewer images than we expect | |
| break | |
| x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin | |
| im = im.transpose(1, 2, 0) | |
| mosaic[y:y + h, x:x + w, :] = im | |
| # Resize (optional) | |
| scale = max_size / ns / max(h, w) | |
| if scale < 1: | |
| h = math.ceil(scale * h) | |
| w = math.ceil(scale * w) | |
| mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h))) | |
| # Annotate | |
| fs = int((h + w) * ns * 0.01) # font size | |
| annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names) | |
| for i in range(i + 1): | |
| x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin | |
| annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders | |
| if paths: | |
| annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames | |
| if len(cls) > 0: | |
| idx = batch_idx == i | |
| classes = cls[idx].astype('int') | |
| if len(bboxes): | |
| boxes = xywh2xyxy(bboxes[idx, :4]).T | |
| labels = bboxes.shape[1] == 4 # labels if no conf column | |
| conf = None if labels else bboxes[idx, 4] # check for confidence presence (label vs pred) | |
| if boxes.shape[1]: | |
| if boxes.max() <= 1.01: # if normalized with tolerance 0.01 | |
| boxes[[0, 2]] *= w # scale to pixels | |
| boxes[[1, 3]] *= h | |
| elif scale < 1: # absolute coords need scale if image scales | |
| boxes *= scale | |
| boxes[[0, 2]] += x | |
| boxes[[1, 3]] += y | |
| for j, box in enumerate(boxes.T.tolist()): | |
| c = classes[j] | |
| color = colors(c) | |
| c = names.get(c, c) if names else c | |
| if labels or conf[j] > 0.25: # 0.25 conf thresh | |
| label = f'{c}' if labels else f'{c} {conf[j]:.1f}' | |
| annotator.box_label(box, label, color=color) | |
| elif len(classes): | |
| for c in classes: | |
| color = colors(c) | |
| c = names.get(c, c) if names else c | |
| annotator.text((x, y), f'{c}', txt_color=color, box_style=True) | |
| # Plot keypoints | |
| if len(kpts): | |
| kpts_ = kpts[idx].copy() | |
| if len(kpts_): | |
| if kpts_[..., 0].max() <= 1.01 or kpts_[..., 1].max() <= 1.01: # if normalized with tolerance .01 | |
| kpts_[..., 0] *= w # scale to pixels | |
| kpts_[..., 1] *= h | |
| elif scale < 1: # absolute coords need scale if image scales | |
| kpts_ *= scale | |
| kpts_[..., 0] += x | |
| kpts_[..., 1] += y | |
| for j in range(len(kpts_)): | |
| if labels or conf[j] > 0.25: # 0.25 conf thresh | |
| annotator.kpts(kpts_[j]) | |
| # Plot masks | |
| if len(masks): | |
| if idx.shape[0] == masks.shape[0]: # overlap_masks=False | |
| image_masks = masks[idx] | |
| else: # overlap_masks=True | |
| image_masks = masks[[i]] # (1, 640, 640) | |
| nl = idx.sum() | |
| index = np.arange(nl).reshape((nl, 1, 1)) + 1 | |
| image_masks = np.repeat(image_masks, nl, axis=0) | |
| image_masks = np.where(image_masks == index, 1.0, 0.0) | |
| im = np.asarray(annotator.im).copy() | |
| for j, box in enumerate(boxes.T.tolist()): | |
| if labels or conf[j] > 0.25: # 0.25 conf thresh | |
| color = colors(classes[j]) | |
| mh, mw = image_masks[j].shape | |
| if mh != h or mw != w: | |
| mask = image_masks[j].astype(np.uint8) | |
| mask = cv2.resize(mask, (w, h)) | |
| mask = mask.astype(bool) | |
| else: | |
| mask = image_masks[j].astype(bool) | |
| with contextlib.suppress(Exception): | |
| im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6 | |
| annotator.fromarray(im) | |
| annotator.im.save(fname) # save | |
| if on_plot: | |
| on_plot(fname) | |
| def plot_results(file='path/to/results.csv', dir='', segment=False, pose=False, classify=False, on_plot=None): | |
| """Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv').""" | |
| import pandas as pd | |
| save_dir = Path(file).parent if file else Path(dir) | |
| if classify: | |
| fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True) | |
| index = [1, 4, 2, 3] | |
| elif segment: | |
| fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True) | |
| index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12] | |
| elif pose: | |
| fig, ax = plt.subplots(2, 9, figsize=(21, 6), tight_layout=True) | |
| index = [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 8, 9, 12, 13] | |
| else: | |
| fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) | |
| index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7] | |
| ax = ax.ravel() | |
| files = list(save_dir.glob('results*.csv')) | |
| assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.' | |
| for f in files: | |
| try: | |
| data = pd.read_csv(f) | |
| s = [x.strip() for x in data.columns] | |
| x = data.values[:, 0] | |
| for i, j in enumerate(index): | |
| y = data.values[:, j].astype('float') | |
| # y[y == 0] = np.nan # don't show zero values | |
| ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8) # actual results | |
| ax[i].plot(x, gaussian_filter1d(y, sigma=3), ':', label='smooth', linewidth=2) # smoothing line | |
| ax[i].set_title(s[j], fontsize=12) | |
| # if j in [8, 9, 10]: # share train and val loss y axes | |
| # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) | |
| except Exception as e: | |
| LOGGER.warning(f'WARNING: Plotting error for {f}: {e}') | |
| ax[1].legend() | |
| fname = save_dir / 'results.png' | |
| fig.savefig(fname, dpi=200) | |
| plt.close() | |
| if on_plot: | |
| on_plot(fname) | |
| def output_to_target(output, max_det=300): | |
| """Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting.""" | |
| targets = [] | |
| for i, o in enumerate(output): | |
| box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1) | |
| j = torch.full((conf.shape[0], 1), i) | |
| targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1)) | |
| targets = torch.cat(targets, 0).numpy() | |
| return targets[:, 0], targets[:, 1], targets[:, 2:] | |
| def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')): | |
| """ | |
| Visualize feature maps of a given model module during inference. | |
| Args: | |
| x (torch.Tensor): Features to be visualized. | |
| module_type (str): Module type. | |
| stage (int): Module stage within the model. | |
| n (int, optional): Maximum number of feature maps to plot. Defaults to 32. | |
| save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp'). | |
| """ | |
| for m in ['Detect', 'Pose', 'Segment']: | |
| if m in module_type: | |
| return | |
| batch, channels, height, width = x.shape # batch, channels, height, width | |
| if height > 1 and width > 1: | |
| f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename | |
| blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels | |
| n = min(n, channels) # number of plots | |
| fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols | |
| ax = ax.ravel() | |
| plt.subplots_adjust(wspace=0.05, hspace=0.05) | |
| for i in range(n): | |
| ax[i].imshow(blocks[i].squeeze()) # cmap='gray' | |
| ax[i].axis('off') | |
| LOGGER.info(f'Saving {f}... ({n}/{channels})') | |
| plt.savefig(f, dpi=300, bbox_inches='tight') | |
| plt.close() | |
| np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save | |