Spaces:
Sleeping
Sleeping
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| import contextlib | |
| import math | |
| import re | |
| import time | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import torchvision | |
| from ultralytics.utils import LOGGER | |
| from .metrics import box_iou | |
| class Profile(contextlib.ContextDecorator): | |
| """ | |
| YOLOv8 Profile class. | |
| Usage: as a decorator with @Profile() or as a context manager with 'with Profile():' | |
| """ | |
| def __init__(self, t=0.0): | |
| """ | |
| Initialize the Profile class. | |
| Args: | |
| t (float): Initial time. Defaults to 0.0. | |
| """ | |
| self.t = t | |
| self.cuda = torch.cuda.is_available() | |
| def __enter__(self): | |
| """ | |
| Start timing. | |
| """ | |
| self.start = self.time() | |
| return self | |
| def __exit__(self, type, value, traceback): | |
| """ | |
| Stop timing. | |
| """ | |
| self.dt = self.time() - self.start # delta-time | |
| self.t += self.dt # accumulate dt | |
| def time(self): | |
| """ | |
| Get current time. | |
| """ | |
| if self.cuda: | |
| torch.cuda.synchronize() | |
| return time.time() | |
| def coco80_to_coco91_class(): # | |
| """ | |
| Converts 80-index (val2014) to 91-index (paper). | |
| For details see https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/. | |
| Example: | |
| ```python | |
| a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') | |
| b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') | |
| x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco | |
| x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet | |
| ``` | |
| """ | |
| return [ | |
| 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, | |
| 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, | |
| 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] | |
| def segment2box(segment, width=640, height=640): | |
| """ | |
| Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy) | |
| Args: | |
| segment (torch.Tensor): the segment label | |
| width (int): the width of the image. Defaults to 640 | |
| height (int): The height of the image. Defaults to 640 | |
| Returns: | |
| (np.ndarray): the minimum and maximum x and y values of the segment. | |
| """ | |
| # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy) | |
| x, y = segment.T # segment xy | |
| inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height) | |
| x, y, = x[inside], y[inside] | |
| return np.array([x.min(), y.min(), x.max(), y.max()], dtype=segment.dtype) if any(x) else np.zeros( | |
| 4, dtype=segment.dtype) # xyxy | |
| def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None, padding=True): | |
| """ | |
| Rescales bounding boxes (in the format of xyxy) from the shape of the image they were originally specified in | |
| (img1_shape) to the shape of a different image (img0_shape). | |
| Args: | |
| img1_shape (tuple): The shape of the image that the bounding boxes are for, in the format of (height, width). | |
| boxes (torch.Tensor): the bounding boxes of the objects in the image, in the format of (x1, y1, x2, y2) | |
| img0_shape (tuple): the shape of the target image, in the format of (height, width). | |
| ratio_pad (tuple): a tuple of (ratio, pad) for scaling the boxes. If not provided, the ratio and pad will be | |
| calculated based on the size difference between the two images. | |
| padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular | |
| rescaling. | |
| Returns: | |
| boxes (torch.Tensor): The scaled bounding boxes, in the format of (x1, y1, x2, y2) | |
| """ | |
| if ratio_pad is None: # calculate from img0_shape | |
| gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new | |
| pad = round((img1_shape[1] - img0_shape[1] * gain) / 2 - 0.1), round( | |
| (img1_shape[0] - img0_shape[0] * gain) / 2 - 0.1) # wh padding | |
| else: | |
| gain = ratio_pad[0][0] | |
| pad = ratio_pad[1] | |
| if padding: | |
| boxes[..., [0, 2]] -= pad[0] # x padding | |
| boxes[..., [1, 3]] -= pad[1] # y padding | |
| boxes[..., :4] /= gain | |
| clip_boxes(boxes, img0_shape) | |
| return boxes | |
| def make_divisible(x, divisor): | |
| """ | |
| Returns the nearest number that is divisible by the given divisor. | |
| Args: | |
| x (int): The number to make divisible. | |
| divisor (int | torch.Tensor): The divisor. | |
| Returns: | |
| (int): The nearest number divisible by the divisor. | |
| """ | |
| if isinstance(divisor, torch.Tensor): | |
| divisor = int(divisor.max()) # to int | |
| return math.ceil(x / divisor) * divisor | |
| def non_max_suppression( | |
| prediction, | |
| conf_thres=0.25, | |
| iou_thres=0.45, | |
| classes=None, | |
| agnostic=False, | |
| multi_label=False, | |
| labels=(), | |
| max_det=300, | |
| nc=0, # number of classes (optional) | |
| max_time_img=0.05, | |
| max_nms=30000, | |
| max_wh=7680, | |
| ): | |
| """ | |
| Perform non-maximum suppression (NMS) on a set of boxes, with support for masks and multiple labels per box. | |
| Arguments: | |
| prediction (torch.Tensor): A tensor of shape (batch_size, num_classes + 4 + num_masks, num_boxes) | |
| containing the predicted boxes, classes, and masks. The tensor should be in the format | |
| output by a model, such as YOLO. | |
| conf_thres (float): The confidence threshold below which boxes will be filtered out. | |
| Valid values are between 0.0 and 1.0. | |
| iou_thres (float): The IoU threshold below which boxes will be filtered out during NMS. | |
| Valid values are between 0.0 and 1.0. | |
| classes (List[int]): A list of class indices to consider. If None, all classes will be considered. | |
| agnostic (bool): If True, the model is agnostic to the number of classes, and all | |
| classes will be considered as one. | |
| multi_label (bool): If True, each box may have multiple labels. | |
| labels (List[List[Union[int, float, torch.Tensor]]]): A list of lists, where each inner | |
| list contains the apriori labels for a given image. The list should be in the format | |
| output by a dataloader, with each label being a tuple of (class_index, x1, y1, x2, y2). | |
| max_det (int): The maximum number of boxes to keep after NMS. | |
| nc (int, optional): The number of classes output by the model. Any indices after this will be considered masks. | |
| max_time_img (float): The maximum time (seconds) for processing one image. | |
| max_nms (int): The maximum number of boxes into torchvision.ops.nms(). | |
| max_wh (int): The maximum box width and height in pixels | |
| Returns: | |
| (List[torch.Tensor]): A list of length batch_size, where each element is a tensor of | |
| shape (num_boxes, 6 + num_masks) containing the kept boxes, with columns | |
| (x1, y1, x2, y2, confidence, class, mask1, mask2, ...). | |
| """ | |
| # Checks | |
| assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0' | |
| assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0' | |
| if isinstance(prediction, (list, tuple)): # YOLOv8 model in validation model, output = (inference_out, loss_out) | |
| prediction = prediction[0] # select only inference output | |
| device = prediction.device | |
| mps = 'mps' in device.type # Apple MPS | |
| if mps: # MPS not fully supported yet, convert tensors to CPU before NMS | |
| prediction = prediction.cpu() | |
| bs = prediction.shape[0] # batch size | |
| nc = nc or (prediction.shape[1] - 4) # number of classes | |
| nm = prediction.shape[1] - nc - 4 | |
| mi = 4 + nc # mask start index | |
| xc = prediction[:, 4:mi].amax(1) > conf_thres # candidates | |
| # Settings | |
| # min_wh = 2 # (pixels) minimum box width and height | |
| time_limit = 0.5 + max_time_img * bs # seconds to quit after | |
| redundant = True # require redundant detections | |
| multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) | |
| merge = False # use merge-NMS | |
| prediction = prediction.transpose(-1, -2) # shape(1,84,6300) to shape(1,6300,84) | |
| prediction[..., :4] = xywh2xyxy(prediction[..., :4]) # xywh to xyxy | |
| t = time.time() | |
| output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs | |
| for xi, x in enumerate(prediction): # image index, image inference | |
| # Apply constraints | |
| # x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0 # width-height | |
| x = x[xc[xi]] # confidence | |
| # Cat apriori labels if autolabelling | |
| if labels and len(labels[xi]): | |
| lb = labels[xi] | |
| v = torch.zeros((len(lb), nc + nm + 5), device=x.device) | |
| v[:, :4] = lb[:, 1:5] # box | |
| v[range(len(lb)), lb[:, 0].long() + 4] = 1.0 # cls | |
| x = torch.cat((x, v), 0) | |
| # If none remain process next image | |
| if not x.shape[0]: | |
| continue | |
| # Detections matrix nx6 (xyxy, conf, cls) | |
| box, cls, mask = x.split((4, nc, nm), 1) | |
| if multi_label: | |
| i, j = torch.where(cls > conf_thres) | |
| x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1) | |
| else: # best class only | |
| conf, j = cls.max(1, keepdim=True) | |
| x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres] | |
| # Filter by class | |
| if classes is not None: | |
| x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] | |
| # Apply finite constraint | |
| # if not torch.isfinite(x).all(): | |
| # x = x[torch.isfinite(x).all(1)] | |
| # Check shape | |
| n = x.shape[0] # number of boxes | |
| if not n: # no boxes | |
| continue | |
| if n > max_nms: # excess boxes | |
| x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence and remove excess boxes | |
| # Batched NMS | |
| c = x[:, 5:6] * (0 if agnostic else max_wh) # classes | |
| boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores | |
| i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS | |
| i = i[:max_det] # limit detections | |
| if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) | |
| # Update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) | |
| iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix | |
| weights = iou * scores[None] # box weights | |
| x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes | |
| if redundant: | |
| i = i[iou.sum(1) > 1] # require redundancy | |
| output[xi] = x[i] | |
| if mps: | |
| output[xi] = output[xi].to(device) | |
| if (time.time() - t) > time_limit: | |
| LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded') | |
| break # time limit exceeded | |
| return output | |
| def clip_boxes(boxes, shape): | |
| """ | |
| It takes a list of bounding boxes and a shape (height, width) and clips the bounding boxes to the | |
| shape | |
| Args: | |
| boxes (torch.Tensor): the bounding boxes to clip | |
| shape (tuple): the shape of the image | |
| """ | |
| if isinstance(boxes, torch.Tensor): # faster individually | |
| boxes[..., 0].clamp_(0, shape[1]) # x1 | |
| boxes[..., 1].clamp_(0, shape[0]) # y1 | |
| boxes[..., 2].clamp_(0, shape[1]) # x2 | |
| boxes[..., 3].clamp_(0, shape[0]) # y2 | |
| else: # np.array (faster grouped) | |
| boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2 | |
| boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2 | |
| def clip_coords(coords, shape): | |
| """ | |
| Clip line coordinates to the image boundaries. | |
| Args: | |
| coords (torch.Tensor | numpy.ndarray): A list of line coordinates. | |
| shape (tuple): A tuple of integers representing the size of the image in the format (height, width). | |
| Returns: | |
| (None): The function modifies the input `coordinates` in place, by clipping each coordinate to the image boundaries. | |
| """ | |
| if isinstance(coords, torch.Tensor): # faster individually | |
| coords[..., 0].clamp_(0, shape[1]) # x | |
| coords[..., 1].clamp_(0, shape[0]) # y | |
| else: # np.array (faster grouped) | |
| coords[..., 0] = coords[..., 0].clip(0, shape[1]) # x | |
| coords[..., 1] = coords[..., 1].clip(0, shape[0]) # y | |
| def scale_image(masks, im0_shape, ratio_pad=None): | |
| """ | |
| Takes a mask, and resizes it to the original image size | |
| Args: | |
| masks (np.ndarray): resized and padded masks/images, [h, w, num]/[h, w, 3]. | |
| im0_shape (tuple): the original image shape | |
| ratio_pad (tuple): the ratio of the padding to the original image. | |
| Returns: | |
| masks (torch.Tensor): The masks that are being returned. | |
| """ | |
| # Rescale coordinates (xyxy) from im1_shape to im0_shape | |
| im1_shape = masks.shape | |
| if im1_shape[:2] == im0_shape[:2]: | |
| return masks | |
| if ratio_pad is None: # calculate from im0_shape | |
| gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new | |
| pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding | |
| else: | |
| gain = ratio_pad[0][0] | |
| pad = ratio_pad[1] | |
| top, left = int(pad[1]), int(pad[0]) # y, x | |
| bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0]) | |
| if len(masks.shape) < 2: | |
| raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}') | |
| masks = masks[top:bottom, left:right] | |
| masks = cv2.resize(masks, (im0_shape[1], im0_shape[0])) | |
| if len(masks.shape) == 2: | |
| masks = masks[:, :, None] | |
| return masks | |
| def xyxy2xywh(x): | |
| """ | |
| Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format. | |
| Args: | |
| x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format. | |
| Returns: | |
| y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height) format. | |
| """ | |
| y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
| y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center | |
| y[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y center | |
| y[..., 2] = x[..., 2] - x[..., 0] # width | |
| y[..., 3] = x[..., 3] - x[..., 1] # height | |
| return y | |
| def xywh2xyxy(x): | |
| """ | |
| Convert bounding box coordinates from (x, y, width, height) format to (x1, y1, x2, y2) format where (x1, y1) is the | |
| top-left corner and (x2, y2) is the bottom-right corner. | |
| Args: | |
| x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x, y, width, height) format. | |
| Returns: | |
| y (np.ndarray | torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format. | |
| """ | |
| y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
| y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x | |
| y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y | |
| y[..., 2] = x[..., 0] + x[..., 2] / 2 # bottom right x | |
| y[..., 3] = x[..., 1] + x[..., 3] / 2 # bottom right y | |
| return y | |
| def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): | |
| """ | |
| Convert normalized bounding box coordinates to pixel coordinates. | |
| Args: | |
| x (np.ndarray | torch.Tensor): The bounding box coordinates. | |
| w (int): Width of the image. Defaults to 640 | |
| h (int): Height of the image. Defaults to 640 | |
| padw (int): Padding width. Defaults to 0 | |
| padh (int): Padding height. Defaults to 0 | |
| Returns: | |
| y (np.ndarray | torch.Tensor): The coordinates of the bounding box in the format [x1, y1, x2, y2] where | |
| x1,y1 is the top-left corner, x2,y2 is the bottom-right corner of the bounding box. | |
| """ | |
| y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
| y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x | |
| y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y | |
| y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x | |
| y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y | |
| return y | |
| def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0): | |
| """ | |
| Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height, normalized) format. | |
| x, y, width and height are normalized to image dimensions | |
| Args: | |
| x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format. | |
| w (int): The width of the image. Defaults to 640 | |
| h (int): The height of the image. Defaults to 640 | |
| clip (bool): If True, the boxes will be clipped to the image boundaries. Defaults to False | |
| eps (float): The minimum value of the box's width and height. Defaults to 0.0 | |
| Returns: | |
| y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height, normalized) format | |
| """ | |
| if clip: | |
| clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip | |
| y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
| y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center | |
| y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center | |
| y[..., 2] = (x[..., 2] - x[..., 0]) / w # width | |
| y[..., 3] = (x[..., 3] - x[..., 1]) / h # height | |
| return y | |
| def xyn2xy(x, w=640, h=640, padw=0, padh=0): | |
| """ | |
| Convert normalized coordinates to pixel coordinates of shape (n,2) | |
| Args: | |
| x (np.ndarray | torch.Tensor): The input tensor of normalized bounding box coordinates | |
| w (int): The width of the image. Defaults to 640 | |
| h (int): The height of the image. Defaults to 640 | |
| padw (int): The width of the padding. Defaults to 0 | |
| padh (int): The height of the padding. Defaults to 0 | |
| Returns: | |
| y (np.ndarray | torch.Tensor): The x and y coordinates of the top left corner of the bounding box | |
| """ | |
| y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
| y[..., 0] = w * x[..., 0] + padw # top left x | |
| y[..., 1] = h * x[..., 1] + padh # top left y | |
| return y | |
| def xywh2ltwh(x): | |
| """ | |
| Convert the bounding box format from [x, y, w, h] to [x1, y1, w, h], where x1, y1 are the top-left coordinates. | |
| Args: | |
| x (np.ndarray | torch.Tensor): The input tensor with the bounding box coordinates in the xywh format | |
| Returns: | |
| y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format | |
| """ | |
| y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
| y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x | |
| y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y | |
| return y | |
| def xyxy2ltwh(x): | |
| """ | |
| Convert nx4 bounding boxes from [x1, y1, x2, y2] to [x1, y1, w, h], where xy1=top-left, xy2=bottom-right | |
| Args: | |
| x (np.ndarray | torch.Tensor): The input tensor with the bounding boxes coordinates in the xyxy format | |
| Returns: | |
| y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format. | |
| """ | |
| y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
| y[:, 2] = x[:, 2] - x[:, 0] # width | |
| y[:, 3] = x[:, 3] - x[:, 1] # height | |
| return y | |
| def ltwh2xywh(x): | |
| """ | |
| Convert nx4 boxes from [x1, y1, w, h] to [x, y, w, h] where xy1=top-left, xy=center | |
| Args: | |
| x (torch.Tensor): the input tensor | |
| """ | |
| y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
| y[:, 0] = x[:, 0] + x[:, 2] / 2 # center x | |
| y[:, 1] = x[:, 1] + x[:, 3] / 2 # center y | |
| return y | |
| def ltwh2xyxy(x): | |
| """ | |
| It converts the bounding box from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right | |
| Args: | |
| x (np.ndarray | torch.Tensor): the input image | |
| Returns: | |
| y (np.ndarray | torch.Tensor): the xyxy coordinates of the bounding boxes. | |
| """ | |
| y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
| y[:, 2] = x[:, 2] + x[:, 0] # width | |
| y[:, 3] = x[:, 3] + x[:, 1] # height | |
| return y | |
| def segments2boxes(segments): | |
| """ | |
| It converts segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh) | |
| Args: | |
| segments (list): list of segments, each segment is a list of points, each point is a list of x, y coordinates | |
| Returns: | |
| (np.ndarray): the xywh coordinates of the bounding boxes. | |
| """ | |
| boxes = [] | |
| for s in segments: | |
| x, y = s.T # segment xy | |
| boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy | |
| return xyxy2xywh(np.array(boxes)) # cls, xywh | |
| def resample_segments(segments, n=1000): | |
| """ | |
| Inputs a list of segments (n,2) and returns a list of segments (n,2) up-sampled to n points each. | |
| Args: | |
| segments (list): a list of (n,2) arrays, where n is the number of points in the segment. | |
| n (int): number of points to resample the segment to. Defaults to 1000 | |
| Returns: | |
| segments (list): the resampled segments. | |
| """ | |
| for i, s in enumerate(segments): | |
| s = np.concatenate((s, s[0:1, :]), axis=0) | |
| x = np.linspace(0, len(s) - 1, n) | |
| xp = np.arange(len(s)) | |
| segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)], | |
| dtype=np.float32).reshape(2, -1).T # segment xy | |
| return segments | |
| def crop_mask(masks, boxes): | |
| """ | |
| It takes a mask and a bounding box, and returns a mask that is cropped to the bounding box | |
| Args: | |
| masks (torch.Tensor): [n, h, w] tensor of masks | |
| boxes (torch.Tensor): [n, 4] tensor of bbox coordinates in relative point form | |
| Returns: | |
| (torch.Tensor): The masks are being cropped to the bounding box. | |
| """ | |
| n, h, w = masks.shape | |
| x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(n,1,1) | |
| r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,1,w) | |
| c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(1,h,1) | |
| return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2)) | |
| def process_mask_upsample(protos, masks_in, bboxes, shape): | |
| """ | |
| It takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher | |
| quality but is slower. | |
| Args: | |
| protos (torch.Tensor): [mask_dim, mask_h, mask_w] | |
| masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms | |
| bboxes (torch.Tensor): [n, 4], n is number of masks after nms | |
| shape (tuple): the size of the input image (h,w) | |
| Returns: | |
| (torch.Tensor): The upsampled masks. | |
| """ | |
| c, mh, mw = protos.shape # CHW | |
| masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) | |
| masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW | |
| masks = crop_mask(masks, bboxes) # CHW | |
| return masks.gt_(0.5) | |
| def process_mask(protos, masks_in, bboxes, shape, upsample=False): | |
| """ | |
| Apply masks to bounding boxes using the output of the mask head. | |
| Args: | |
| protos (torch.Tensor): A tensor of shape [mask_dim, mask_h, mask_w]. | |
| masks_in (torch.Tensor): A tensor of shape [n, mask_dim], where n is the number of masks after NMS. | |
| bboxes (torch.Tensor): A tensor of shape [n, 4], where n is the number of masks after NMS. | |
| shape (tuple): A tuple of integers representing the size of the input image in the format (h, w). | |
| upsample (bool): A flag to indicate whether to upsample the mask to the original image size. Default is False. | |
| Returns: | |
| (torch.Tensor): A binary mask tensor of shape [n, h, w], where n is the number of masks after NMS, and h and w | |
| are the height and width of the input image. The mask is applied to the bounding boxes. | |
| """ | |
| c, mh, mw = protos.shape # CHW | |
| ih, iw = shape | |
| masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW | |
| downsampled_bboxes = bboxes.clone() | |
| downsampled_bboxes[:, 0] *= mw / iw | |
| downsampled_bboxes[:, 2] *= mw / iw | |
| downsampled_bboxes[:, 3] *= mh / ih | |
| downsampled_bboxes[:, 1] *= mh / ih | |
| masks = crop_mask(masks, downsampled_bboxes) # CHW | |
| if upsample: | |
| masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW | |
| return masks.gt_(0.5) | |
| def process_mask_native(protos, masks_in, bboxes, shape): | |
| """ | |
| It takes the output of the mask head, and crops it after upsampling to the bounding boxes. | |
| Args: | |
| protos (torch.Tensor): [mask_dim, mask_h, mask_w] | |
| masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms | |
| bboxes (torch.Tensor): [n, 4], n is number of masks after nms | |
| shape (tuple): the size of the input image (h,w) | |
| Returns: | |
| masks (torch.Tensor): The returned masks with dimensions [h, w, n] | |
| """ | |
| c, mh, mw = protos.shape # CHW | |
| masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) | |
| masks = scale_masks(masks[None], shape)[0] # CHW | |
| masks = crop_mask(masks, bboxes) # CHW | |
| return masks.gt_(0.5) | |
| def scale_masks(masks, shape, padding=True): | |
| """ | |
| Rescale segment masks to shape. | |
| Args: | |
| masks (torch.Tensor): (N, C, H, W). | |
| shape (tuple): Height and width. | |
| padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular | |
| rescaling. | |
| """ | |
| mh, mw = masks.shape[2:] | |
| gain = min(mh / shape[0], mw / shape[1]) # gain = old / new | |
| pad = [mw - shape[1] * gain, mh - shape[0] * gain] # wh padding | |
| if padding: | |
| pad[0] /= 2 | |
| pad[1] /= 2 | |
| top, left = (int(pad[1]), int(pad[0])) if padding else (0, 0) # y, x | |
| bottom, right = (int(mh - pad[1]), int(mw - pad[0])) | |
| masks = masks[..., top:bottom, left:right] | |
| masks = F.interpolate(masks, shape, mode='bilinear', align_corners=False) # NCHW | |
| return masks | |
| def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None, normalize=False, padding=True): | |
| """ | |
| Rescale segment coordinates (xyxy) from img1_shape to img0_shape | |
| Args: | |
| img1_shape (tuple): The shape of the image that the coords are from. | |
| coords (torch.Tensor): the coords to be scaled | |
| img0_shape (tuple): the shape of the image that the segmentation is being applied to | |
| ratio_pad (tuple): the ratio of the image size to the padded image size. | |
| normalize (bool): If True, the coordinates will be normalized to the range [0, 1]. Defaults to False | |
| padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular | |
| rescaling. | |
| Returns: | |
| coords (torch.Tensor): the segmented image. | |
| """ | |
| if ratio_pad is None: # calculate from img0_shape | |
| gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new | |
| pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding | |
| else: | |
| gain = ratio_pad[0][0] | |
| pad = ratio_pad[1] | |
| if padding: | |
| coords[..., 0] -= pad[0] # x padding | |
| coords[..., 1] -= pad[1] # y padding | |
| coords[..., 0] /= gain | |
| coords[..., 1] /= gain | |
| clip_coords(coords, img0_shape) | |
| if normalize: | |
| coords[..., 0] /= img0_shape[1] # width | |
| coords[..., 1] /= img0_shape[0] # height | |
| return coords | |
| def masks2segments(masks, strategy='largest'): | |
| """ | |
| It takes a list of masks(n,h,w) and returns a list of segments(n,xy) | |
| Args: | |
| masks (torch.Tensor): the output of the model, which is a tensor of shape (batch_size, 160, 160) | |
| strategy (str): 'concat' or 'largest'. Defaults to largest | |
| Returns: | |
| segments (List): list of segment masks | |
| """ | |
| segments = [] | |
| for x in masks.int().cpu().numpy().astype('uint8'): | |
| c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0] | |
| if c: | |
| if strategy == 'concat': # concatenate all segments | |
| c = np.concatenate([x.reshape(-1, 2) for x in c]) | |
| elif strategy == 'largest': # select largest segment | |
| c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2) | |
| else: | |
| c = np.zeros((0, 2)) # no segments found | |
| segments.append(c.astype('float32')) | |
| return segments | |
| def clean_str(s): | |
| """ | |
| Cleans a string by replacing special characters with underscore _ | |
| Args: | |
| s (str): a string needing special characters replaced | |
| Returns: | |
| (str): a string with special characters replaced by an underscore _ | |
| """ | |
| return re.sub(pattern='[|@#!¡·$€%&()=?¿^*;:,¨´><+]', repl='_', string=s) | |