Spaces:
Running
Running
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| import contextlib | |
| import inspect | |
| import logging.config | |
| import os | |
| import platform | |
| import re | |
| import subprocess | |
| import sys | |
| import threading | |
| import urllib | |
| import uuid | |
| from pathlib import Path | |
| from types import SimpleNamespace | |
| from typing import Union | |
| import cv2 | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import torch | |
| import yaml | |
| from ultralytics import __version__ | |
| # PyTorch Multi-GPU DDP Constants | |
| RANK = int(os.getenv('RANK', -1)) | |
| LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html | |
| WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) | |
| # Other Constants | |
| FILE = Path(__file__).resolve() | |
| ROOT = FILE.parents[1] # YOLO | |
| DEFAULT_CFG_PATH = ROOT / 'cfg/default.yaml' | |
| NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads | |
| AUTOINSTALL = str(os.getenv('YOLO_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode | |
| VERBOSE = str(os.getenv('YOLO_VERBOSE', True)).lower() == 'true' # global verbose mode | |
| TQDM_BAR_FORMAT = '{l_bar}{bar:10}{r_bar}' # tqdm bar format | |
| LOGGING_NAME = 'ultralytics' | |
| MACOS, LINUX, WINDOWS = (platform.system() == x for x in ['Darwin', 'Linux', 'Windows']) # environment booleans | |
| ARM64 = platform.machine() in ('arm64', 'aarch64') # ARM64 booleans | |
| HELP_MSG = \ | |
| """ | |
| Usage examples for running YOLOv8: | |
| 1. Install the ultralytics package: | |
| pip install ultralytics | |
| 2. Use the Python SDK: | |
| from ultralytics import YOLO | |
| # Load a model | |
| model = YOLO('yolov8n.yaml') # build a new model from scratch | |
| model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training) | |
| # Use the model | |
| results = model.train(data="coco128.yaml", epochs=3) # train the model | |
| results = model.val() # evaluate model performance on the validation set | |
| results = model('https://ultralytics.com/images/bus.jpg') # predict on an image | |
| success = model.export(format='onnx') # export the model to ONNX format | |
| 3. Use the command line interface (CLI): | |
| YOLOv8 'yolo' CLI commands use the following syntax: | |
| yolo TASK MODE ARGS | |
| Where TASK (optional) is one of [detect, segment, classify] | |
| MODE (required) is one of [train, val, predict, export] | |
| ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults. | |
| See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg' | |
| - Train a detection model for 10 epochs with an initial learning_rate of 0.01 | |
| yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01 | |
| - Predict a YouTube video using a pretrained segmentation model at image size 320: | |
| yolo segment predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320 | |
| - Val a pretrained detection model at batch-size 1 and image size 640: | |
| yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640 | |
| - Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required) | |
| yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128 | |
| - Run special commands: | |
| yolo help | |
| yolo checks | |
| yolo version | |
| yolo settings | |
| yolo copy-cfg | |
| yolo cfg | |
| Docs: https://docs.ultralytics.com | |
| Community: https://community.ultralytics.com | |
| GitHub: https://github.com/ultralytics/ultralytics | |
| """ | |
| # Settings | |
| torch.set_printoptions(linewidth=320, precision=4, profile='default') | |
| np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 | |
| cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) | |
| os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads | |
| os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' # for deterministic training | |
| os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # suppress verbose TF compiler warnings in Colab | |
| class SimpleClass: | |
| """ | |
| Ultralytics SimpleClass is a base class providing helpful string representation, error reporting, and attribute | |
| access methods for easier debugging and usage. | |
| """ | |
| def __str__(self): | |
| """Return a human-readable string representation of the object.""" | |
| attr = [] | |
| for a in dir(self): | |
| v = getattr(self, a) | |
| if not callable(v) and not a.startswith('_'): | |
| if isinstance(v, SimpleClass): | |
| # Display only the module and class name for subclasses | |
| s = f'{a}: {v.__module__}.{v.__class__.__name__} object' | |
| else: | |
| s = f'{a}: {repr(v)}' | |
| attr.append(s) | |
| return f'{self.__module__}.{self.__class__.__name__} object with attributes:\n\n' + '\n'.join(attr) | |
| def __repr__(self): | |
| """Return a machine-readable string representation of the object.""" | |
| return self.__str__() | |
| def __getattr__(self, attr): | |
| """Custom attribute access error message with helpful information.""" | |
| name = self.__class__.__name__ | |
| raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") | |
| class IterableSimpleNamespace(SimpleNamespace): | |
| """ | |
| Ultralytics IterableSimpleNamespace is an extension class of SimpleNamespace that adds iterable functionality and | |
| enables usage with dict() and for loops. | |
| """ | |
| def __iter__(self): | |
| """Return an iterator of key-value pairs from the namespace's attributes.""" | |
| return iter(vars(self).items()) | |
| def __str__(self): | |
| """Return a human-readable string representation of the object.""" | |
| return '\n'.join(f'{k}={v}' for k, v in vars(self).items()) | |
| def __getattr__(self, attr): | |
| """Custom attribute access error message with helpful information.""" | |
| name = self.__class__.__name__ | |
| raise AttributeError(f""" | |
| '{name}' object has no attribute '{attr}'. This may be caused by a modified or out of date ultralytics | |
| 'default.yaml' file.\nPlease update your code with 'pip install -U ultralytics' and if necessary replace | |
| {DEFAULT_CFG_PATH} with the latest version from | |
| https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/default.yaml | |
| """) | |
| def get(self, key, default=None): | |
| """Return the value of the specified key if it exists; otherwise, return the default value.""" | |
| return getattr(self, key, default) | |
| def plt_settings(rcparams=None, backend='Agg'): | |
| """ | |
| Decorator to temporarily set rc parameters and the backend for a plotting function. | |
| Usage: | |
| decorator: @plt_settings({"font.size": 12}) | |
| context manager: with plt_settings({"font.size": 12}): | |
| Args: | |
| rcparams (dict): Dictionary of rc parameters to set. | |
| backend (str, optional): Name of the backend to use. Defaults to 'Agg'. | |
| Returns: | |
| (Callable): Decorated function with temporarily set rc parameters and backend. This decorator can be | |
| applied to any function that needs to have specific matplotlib rc parameters and backend for its execution. | |
| """ | |
| if rcparams is None: | |
| rcparams = {'font.size': 11} | |
| def decorator(func): | |
| """Decorator to apply temporary rc parameters and backend to a function.""" | |
| def wrapper(*args, **kwargs): | |
| """Sets rc parameters and backend, calls the original function, and restores the settings.""" | |
| original_backend = plt.get_backend() | |
| plt.switch_backend(backend) | |
| with plt.rc_context(rcparams): | |
| result = func(*args, **kwargs) | |
| plt.switch_backend(original_backend) | |
| return result | |
| return wrapper | |
| return decorator | |
| def set_logging(name=LOGGING_NAME, verbose=True): | |
| """Sets up logging for the given name.""" | |
| rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings | |
| level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR | |
| logging.config.dictConfig({ | |
| 'version': 1, | |
| 'disable_existing_loggers': False, | |
| 'formatters': { | |
| name: { | |
| 'format': '%(message)s'}}, | |
| 'handlers': { | |
| name: { | |
| 'class': 'logging.StreamHandler', | |
| 'formatter': name, | |
| 'level': level}}, | |
| 'loggers': { | |
| name: { | |
| 'level': level, | |
| 'handlers': [name], | |
| 'propagate': False}}}) | |
| def emojis(string=''): | |
| """Return platform-dependent emoji-safe version of string.""" | |
| return string.encode().decode('ascii', 'ignore') if WINDOWS else string | |
| class EmojiFilter(logging.Filter): | |
| """ | |
| A custom logging filter class for removing emojis in log messages. | |
| This filter is particularly useful for ensuring compatibility with Windows terminals | |
| that may not support the display of emojis in log messages. | |
| """ | |
| def filter(self, record): | |
| """Filter logs by emoji unicode characters on windows.""" | |
| record.msg = emojis(record.msg) | |
| return super().filter(record) | |
| # Set logger | |
| set_logging(LOGGING_NAME, verbose=VERBOSE) # run before defining LOGGER | |
| LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.) | |
| if WINDOWS: # emoji-safe logging | |
| LOGGER.addFilter(EmojiFilter()) | |
| class ThreadingLocked: | |
| """ | |
| A decorator class for ensuring thread-safe execution of a function or method. | |
| This class can be used as a decorator to make sure that if the decorated function | |
| is called from multiple threads, only one thread at a time will be able to execute the function. | |
| Attributes: | |
| lock (threading.Lock): A lock object used to manage access to the decorated function. | |
| Usage: | |
| @ThreadingLocked() | |
| def my_function(): | |
| # Your code here | |
| pass | |
| """ | |
| def __init__(self): | |
| self.lock = threading.Lock() | |
| def __call__(self, f): | |
| from functools import wraps | |
| def decorated(*args, **kwargs): | |
| with self.lock: | |
| return f(*args, **kwargs) | |
| return decorated | |
| def yaml_save(file='data.yaml', data=None): | |
| """ | |
| Save YAML data to a file. | |
| Args: | |
| file (str, optional): File name. Default is 'data.yaml'. | |
| data (dict): Data to save in YAML format. | |
| Returns: | |
| (None): Data is saved to the specified file. | |
| """ | |
| if data is None: | |
| data = {} | |
| file = Path(file) | |
| if not file.parent.exists(): | |
| # Create parent directories if they don't exist | |
| file.parent.mkdir(parents=True, exist_ok=True) | |
| # Convert Path objects to strings | |
| for k, v in data.items(): | |
| if isinstance(v, Path): | |
| data[k] = str(v) | |
| # Dump data to file in YAML format | |
| with open(file, 'w') as f: | |
| yaml.safe_dump(data, f, sort_keys=False, allow_unicode=True) | |
| def yaml_load(file='data.yaml', append_filename=False): | |
| """ | |
| Load YAML data from a file. | |
| Args: | |
| file (str, optional): File name. Default is 'data.yaml'. | |
| append_filename (bool): Add the YAML filename to the YAML dictionary. Default is False. | |
| Returns: | |
| (dict): YAML data and file name. | |
| """ | |
| with open(file, errors='ignore', encoding='utf-8') as f: | |
| s = f.read() # string | |
| # Remove special characters | |
| if not s.isprintable(): | |
| s = re.sub(r'[^\x09\x0A\x0D\x20-\x7E\x85\xA0-\uD7FF\uE000-\uFFFD\U00010000-\U0010ffff]+', '', s) | |
| # Add YAML filename to dict and return | |
| return {**yaml.safe_load(s), 'yaml_file': str(file)} if append_filename else yaml.safe_load(s) | |
| def yaml_print(yaml_file: Union[str, Path, dict]) -> None: | |
| """ | |
| Pretty prints a yaml file or a yaml-formatted dictionary. | |
| Args: | |
| yaml_file: The file path of the yaml file or a yaml-formatted dictionary. | |
| Returns: | |
| None | |
| """ | |
| yaml_dict = yaml_load(yaml_file) if isinstance(yaml_file, (str, Path)) else yaml_file | |
| dump = yaml.dump(yaml_dict, sort_keys=False, allow_unicode=True) | |
| LOGGER.info(f"Printing '{colorstr('bold', 'black', yaml_file)}'\n\n{dump}") | |
| # Default configuration | |
| DEFAULT_CFG_DICT = yaml_load(DEFAULT_CFG_PATH) | |
| for k, v in DEFAULT_CFG_DICT.items(): | |
| if isinstance(v, str) and v.lower() == 'none': | |
| DEFAULT_CFG_DICT[k] = None | |
| DEFAULT_CFG_KEYS = DEFAULT_CFG_DICT.keys() | |
| DEFAULT_CFG = IterableSimpleNamespace(**DEFAULT_CFG_DICT) | |
| def is_colab(): | |
| """ | |
| Check if the current script is running inside a Google Colab notebook. | |
| Returns: | |
| (bool): True if running inside a Colab notebook, False otherwise. | |
| """ | |
| return 'COLAB_RELEASE_TAG' in os.environ or 'COLAB_BACKEND_VERSION' in os.environ | |
| def is_kaggle(): | |
| """ | |
| Check if the current script is running inside a Kaggle kernel. | |
| Returns: | |
| (bool): True if running inside a Kaggle kernel, False otherwise. | |
| """ | |
| return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com' | |
| def is_jupyter(): | |
| """ | |
| Check if the current script is running inside a Jupyter Notebook. | |
| Verified on Colab, Jupyterlab, Kaggle, Paperspace. | |
| Returns: | |
| (bool): True if running inside a Jupyter Notebook, False otherwise. | |
| """ | |
| with contextlib.suppress(Exception): | |
| from IPython import get_ipython | |
| return get_ipython() is not None | |
| return False | |
| def is_docker() -> bool: | |
| """ | |
| Determine if the script is running inside a Docker container. | |
| Returns: | |
| (bool): True if the script is running inside a Docker container, False otherwise. | |
| """ | |
| file = Path('/proc/self/cgroup') | |
| if file.exists(): | |
| with open(file) as f: | |
| return 'docker' in f.read() | |
| else: | |
| return False | |
| def is_online() -> bool: | |
| """ | |
| Check internet connectivity by attempting to connect to a known online host. | |
| Returns: | |
| (bool): True if connection is successful, False otherwise. | |
| """ | |
| import socket | |
| for host in '1.1.1.1', '8.8.8.8', '223.5.5.5': # Cloudflare, Google, AliDNS: | |
| try: | |
| test_connection = socket.create_connection(address=(host, 53), timeout=2) | |
| except (socket.timeout, socket.gaierror, OSError): | |
| continue | |
| else: | |
| # If the connection was successful, close it to avoid a ResourceWarning | |
| test_connection.close() | |
| return True | |
| return False | |
| ONLINE = is_online() | |
| def is_pip_package(filepath: str = __name__) -> bool: | |
| """ | |
| Determines if the file at the given filepath is part of a pip package. | |
| Args: | |
| filepath (str): The filepath to check. | |
| Returns: | |
| (bool): True if the file is part of a pip package, False otherwise. | |
| """ | |
| import importlib.util | |
| # Get the spec for the module | |
| spec = importlib.util.find_spec(filepath) | |
| # Return whether the spec is not None and the origin is not None (indicating it is a package) | |
| return spec is not None and spec.origin is not None | |
| def is_dir_writeable(dir_path: Union[str, Path]) -> bool: | |
| """ | |
| Check if a directory is writeable. | |
| Args: | |
| dir_path (str | Path): The path to the directory. | |
| Returns: | |
| (bool): True if the directory is writeable, False otherwise. | |
| """ | |
| return os.access(str(dir_path), os.W_OK) | |
| def is_pytest_running(): | |
| """ | |
| Determines whether pytest is currently running or not. | |
| Returns: | |
| (bool): True if pytest is running, False otherwise. | |
| """ | |
| return ('PYTEST_CURRENT_TEST' in os.environ) or ('pytest' in sys.modules) or ('pytest' in Path(sys.argv[0]).stem) | |
| def is_github_actions_ci() -> bool: | |
| """ | |
| Determine if the current environment is a GitHub Actions CI Python runner. | |
| Returns: | |
| (bool): True if the current environment is a GitHub Actions CI Python runner, False otherwise. | |
| """ | |
| return 'GITHUB_ACTIONS' in os.environ and 'RUNNER_OS' in os.environ and 'RUNNER_TOOL_CACHE' in os.environ | |
| def is_git_dir(): | |
| """ | |
| Determines whether the current file is part of a git repository. | |
| If the current file is not part of a git repository, returns None. | |
| Returns: | |
| (bool): True if current file is part of a git repository. | |
| """ | |
| return get_git_dir() is not None | |
| def get_git_dir(): | |
| """ | |
| Determines whether the current file is part of a git repository and if so, returns the repository root directory. | |
| If the current file is not part of a git repository, returns None. | |
| Returns: | |
| (Path | None): Git root directory if found or None if not found. | |
| """ | |
| for d in Path(__file__).parents: | |
| if (d / '.git').is_dir(): | |
| return d | |
| return None # no .git dir found | |
| def get_git_origin_url(): | |
| """ | |
| Retrieves the origin URL of a git repository. | |
| Returns: | |
| (str | None): The origin URL of the git repository. | |
| """ | |
| if is_git_dir(): | |
| with contextlib.suppress(subprocess.CalledProcessError): | |
| origin = subprocess.check_output(['git', 'config', '--get', 'remote.origin.url']) | |
| return origin.decode().strip() | |
| return None # if not git dir or on error | |
| def get_git_branch(): | |
| """ | |
| Returns the current git branch name. If not in a git repository, returns None. | |
| Returns: | |
| (str | None): The current git branch name. | |
| """ | |
| if is_git_dir(): | |
| with contextlib.suppress(subprocess.CalledProcessError): | |
| origin = subprocess.check_output(['git', 'rev-parse', '--abbrev-ref', 'HEAD']) | |
| return origin.decode().strip() | |
| return None # if not git dir or on error | |
| def get_default_args(func): | |
| """Returns a dictionary of default arguments for a function. | |
| Args: | |
| func (callable): The function to inspect. | |
| Returns: | |
| (dict): A dictionary where each key is a parameter name, and each value is the default value of that parameter. | |
| """ | |
| signature = inspect.signature(func) | |
| return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty} | |
| def get_user_config_dir(sub_dir='Ultralytics'): | |
| """ | |
| Get the user config directory. | |
| Args: | |
| sub_dir (str): The name of the subdirectory to create. | |
| Returns: | |
| (Path): The path to the user config directory. | |
| """ | |
| # Return the appropriate config directory for each operating system | |
| if WINDOWS: | |
| path = Path.home() / 'AppData' / 'Roaming' / sub_dir | |
| elif MACOS: # macOS | |
| path = Path.home() / 'Library' / 'Application Support' / sub_dir | |
| elif LINUX: | |
| path = Path.home() / '.config' / sub_dir | |
| else: | |
| raise ValueError(f'Unsupported operating system: {platform.system()}') | |
| # GCP and AWS lambda fix, only /tmp is writeable | |
| if not is_dir_writeable(path.parent): | |
| LOGGER.warning(f"WARNING ⚠️ user config directory '{path}' is not writeable, defaulting to '/tmp' or CWD." | |
| 'Alternatively you can define a YOLO_CONFIG_DIR environment variable for this path.') | |
| path = Path('/tmp') / sub_dir if is_dir_writeable('/tmp') else Path().cwd() / sub_dir | |
| # Create the subdirectory if it does not exist | |
| path.mkdir(parents=True, exist_ok=True) | |
| return path | |
| USER_CONFIG_DIR = Path(os.getenv('YOLO_CONFIG_DIR') or get_user_config_dir()) # Ultralytics settings dir | |
| SETTINGS_YAML = USER_CONFIG_DIR / 'settings.yaml' | |
| def colorstr(*input): | |
| """Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world').""" | |
| *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string | |
| colors = { | |
| 'black': '\033[30m', # basic colors | |
| 'red': '\033[31m', | |
| 'green': '\033[32m', | |
| 'yellow': '\033[33m', | |
| 'blue': '\033[34m', | |
| 'magenta': '\033[35m', | |
| 'cyan': '\033[36m', | |
| 'white': '\033[37m', | |
| 'bright_black': '\033[90m', # bright colors | |
| 'bright_red': '\033[91m', | |
| 'bright_green': '\033[92m', | |
| 'bright_yellow': '\033[93m', | |
| 'bright_blue': '\033[94m', | |
| 'bright_magenta': '\033[95m', | |
| 'bright_cyan': '\033[96m', | |
| 'bright_white': '\033[97m', | |
| 'end': '\033[0m', # misc | |
| 'bold': '\033[1m', | |
| 'underline': '\033[4m'} | |
| return ''.join(colors[x] for x in args) + f'{string}' + colors['end'] | |
| class TryExcept(contextlib.ContextDecorator): | |
| """YOLOv8 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager.""" | |
| def __init__(self, msg='', verbose=True): | |
| """Initialize TryExcept class with optional message and verbosity settings.""" | |
| self.msg = msg | |
| self.verbose = verbose | |
| def __enter__(self): | |
| """Executes when entering TryExcept context, initializes instance.""" | |
| pass | |
| def __exit__(self, exc_type, value, traceback): | |
| """Defines behavior when exiting a 'with' block, prints error message if necessary.""" | |
| if self.verbose and value: | |
| print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}")) | |
| return True | |
| def threaded(func): | |
| """Multi-threads a target function and returns thread. Usage: @threaded decorator.""" | |
| def wrapper(*args, **kwargs): | |
| """Multi-threads a given function and returns the thread.""" | |
| thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True) | |
| thread.start() | |
| return thread | |
| return wrapper | |
| def set_sentry(): | |
| """ | |
| Initialize the Sentry SDK for error tracking and reporting. Only used if sentry_sdk package is installed and | |
| sync=True in settings. Run 'yolo settings' to see and update settings YAML file. | |
| Conditions required to send errors (ALL conditions must be met or no errors will be reported): | |
| - sentry_sdk package is installed | |
| - sync=True in YOLO settings | |
| - pytest is not running | |
| - running in a pip package installation | |
| - running in a non-git directory | |
| - running with rank -1 or 0 | |
| - online environment | |
| - CLI used to run package (checked with 'yolo' as the name of the main CLI command) | |
| The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError | |
| exceptions and to exclude events with 'out of memory' in their exception message. | |
| Additionally, the function sets custom tags and user information for Sentry events. | |
| """ | |
| def before_send(event, hint): | |
| """ | |
| Modify the event before sending it to Sentry based on specific exception types and messages. | |
| Args: | |
| event (dict): The event dictionary containing information about the error. | |
| hint (dict): A dictionary containing additional information about the error. | |
| Returns: | |
| dict: The modified event or None if the event should not be sent to Sentry. | |
| """ | |
| if 'exc_info' in hint: | |
| exc_type, exc_value, tb = hint['exc_info'] | |
| if exc_type in (KeyboardInterrupt, FileNotFoundError) \ | |
| or 'out of memory' in str(exc_value): | |
| return None # do not send event | |
| event['tags'] = { | |
| 'sys_argv': sys.argv[0], | |
| 'sys_argv_name': Path(sys.argv[0]).name, | |
| 'install': 'git' if is_git_dir() else 'pip' if is_pip_package() else 'other', | |
| 'os': ENVIRONMENT} | |
| return event | |
| if SETTINGS['sync'] and \ | |
| RANK in (-1, 0) and \ | |
| Path(sys.argv[0]).name == 'yolo' and \ | |
| not TESTS_RUNNING and \ | |
| ONLINE and \ | |
| is_pip_package() and \ | |
| not is_git_dir(): | |
| # If sentry_sdk package is not installed then return and do not use Sentry | |
| try: | |
| import sentry_sdk # noqa | |
| except ImportError: | |
| return | |
| sentry_sdk.init( | |
| dsn='https://5ff1556b71594bfea135ff0203a0d290@o4504521589325824.ingest.sentry.io/4504521592406016', | |
| debug=False, | |
| traces_sample_rate=1.0, | |
| release=__version__, | |
| environment='production', # 'dev' or 'production' | |
| before_send=before_send, | |
| ignore_errors=[KeyboardInterrupt, FileNotFoundError]) | |
| sentry_sdk.set_user({'id': SETTINGS['uuid']}) # SHA-256 anonymized UUID hash | |
| # Disable all sentry logging | |
| for logger in 'sentry_sdk', 'sentry_sdk.errors': | |
| logging.getLogger(logger).setLevel(logging.CRITICAL) | |
| class SettingsManager(dict): | |
| """ | |
| Manages Ultralytics settings stored in a YAML file. | |
| Args: | |
| file (str | Path): Path to the Ultralytics settings YAML file. Default is USER_CONFIG_DIR / 'settings.yaml'. | |
| version (str): Settings version. In case of local version mismatch, new default settings will be saved. | |
| """ | |
| def __init__(self, file=SETTINGS_YAML, version='0.0.4'): | |
| import copy | |
| import hashlib | |
| from ultralytics.utils.checks import check_version | |
| from ultralytics.utils.torch_utils import torch_distributed_zero_first | |
| git_dir = get_git_dir() | |
| root = git_dir or Path() | |
| datasets_root = (root.parent if git_dir and is_dir_writeable(root.parent) else root).resolve() | |
| self.file = Path(file) | |
| self.version = version | |
| self.defaults = { | |
| 'settings_version': version, | |
| 'datasets_dir': str(datasets_root / 'datasets'), | |
| 'weights_dir': str(root / 'weights'), | |
| 'runs_dir': str(root / 'runs'), | |
| 'uuid': hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(), | |
| 'sync': True, | |
| 'api_key': '', | |
| 'clearml': True, # integrations | |
| 'comet': True, | |
| 'dvc': True, | |
| 'hub': True, | |
| 'mlflow': True, | |
| 'neptune': True, | |
| 'raytune': True, | |
| 'tensorboard': True, | |
| 'wandb': True} | |
| super().__init__(copy.deepcopy(self.defaults)) | |
| with torch_distributed_zero_first(RANK): | |
| if not self.file.exists(): | |
| self.save() | |
| self.load() | |
| correct_keys = self.keys() == self.defaults.keys() | |
| correct_types = all(type(a) == type(b) for a, b in zip(self.values(), self.defaults.values())) | |
| correct_version = check_version(self['settings_version'], self.version) | |
| if not (correct_keys and correct_types and correct_version): | |
| LOGGER.warning( | |
| 'WARNING ⚠️ Ultralytics settings reset to default values. This may be due to a possible problem ' | |
| 'with your settings or a recent ultralytics package update. ' | |
| f"\nView settings with 'yolo settings' or at '{self.file}'" | |
| "\nUpdate settings with 'yolo settings key=value', i.e. 'yolo settings runs_dir=path/to/dir'.") | |
| self.reset() | |
| def load(self): | |
| """Loads settings from the YAML file.""" | |
| super().update(yaml_load(self.file)) | |
| def save(self): | |
| """Saves the current settings to the YAML file.""" | |
| yaml_save(self.file, dict(self)) | |
| def update(self, *args, **kwargs): | |
| """Updates a setting value in the current settings.""" | |
| super().update(*args, **kwargs) | |
| self.save() | |
| def reset(self): | |
| """Resets the settings to default and saves them.""" | |
| self.clear() | |
| self.update(self.defaults) | |
| self.save() | |
| def deprecation_warn(arg, new_arg, version=None): | |
| """Issue a deprecation warning when a deprecated argument is used, suggesting an updated argument.""" | |
| if not version: | |
| version = float(__version__[:3]) + 0.2 # deprecate after 2nd major release | |
| LOGGER.warning(f"WARNING ⚠️ '{arg}' is deprecated and will be removed in 'ultralytics {version}' in the future. " | |
| f"Please use '{new_arg}' instead.") | |
| def clean_url(url): | |
| """Strip auth from URL, i.e. https://url.com/file.txt?auth -> https://url.com/file.txt.""" | |
| url = Path(url).as_posix().replace(':/', '://') # Pathlib turns :// -> :/, as_posix() for Windows | |
| return urllib.parse.unquote(url).split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth | |
| def url2file(url): | |
| """Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt.""" | |
| return Path(clean_url(url)).name | |
| # Run below code on utils init ------------------------------------------------------------------------------------ | |
| # Check first-install steps | |
| PREFIX = colorstr('Ultralytics: ') | |
| SETTINGS = SettingsManager() # initialize settings | |
| DATASETS_DIR = Path(SETTINGS['datasets_dir']) # global datasets directory | |
| ENVIRONMENT = 'Colab' if is_colab() else 'Kaggle' if is_kaggle() else 'Jupyter' if is_jupyter() else \ | |
| 'Docker' if is_docker() else platform.system() | |
| TESTS_RUNNING = is_pytest_running() or is_github_actions_ci() | |
| set_sentry() | |
| # Apply monkey patches if the script is being run from within the parent directory of the script's location | |
| from .patches import imread, imshow, imwrite | |
| # torch.save = torch_save | |
| if Path(inspect.stack()[0].filename).parent.parent.as_posix() in inspect.stack()[-1].filename: | |
| cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow | |