Spaces:
Running
Running
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| from collections import deque | |
| import numpy as np | |
| from .basetrack import TrackState | |
| from .byte_tracker import BYTETracker, STrack | |
| from .utils import matching | |
| from .utils.gmc import GMC | |
| from .utils.kalman_filter import KalmanFilterXYWH | |
| class BOTrack(STrack): | |
| shared_kalman = KalmanFilterXYWH() | |
| def __init__(self, tlwh, score, cls, feat=None, feat_history=50): | |
| """Initialize YOLOv8 object with temporal parameters, such as feature history, alpha and current features.""" | |
| super().__init__(tlwh, score, cls) | |
| self.smooth_feat = None | |
| self.curr_feat = None | |
| if feat is not None: | |
| self.update_features(feat) | |
| self.features = deque([], maxlen=feat_history) | |
| self.alpha = 0.9 | |
| def update_features(self, feat): | |
| """Update features vector and smooth it using exponential moving average.""" | |
| feat /= np.linalg.norm(feat) | |
| self.curr_feat = feat | |
| if self.smooth_feat is None: | |
| self.smooth_feat = feat | |
| else: | |
| self.smooth_feat = self.alpha * self.smooth_feat + (1 - self.alpha) * feat | |
| self.features.append(feat) | |
| self.smooth_feat /= np.linalg.norm(self.smooth_feat) | |
| def predict(self): | |
| """Predicts the mean and covariance using Kalman filter.""" | |
| mean_state = self.mean.copy() | |
| if self.state != TrackState.Tracked: | |
| mean_state[6] = 0 | |
| mean_state[7] = 0 | |
| self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance) | |
| def re_activate(self, new_track, frame_id, new_id=False): | |
| """Reactivates a track with updated features and optionally assigns a new ID.""" | |
| if new_track.curr_feat is not None: | |
| self.update_features(new_track.curr_feat) | |
| super().re_activate(new_track, frame_id, new_id) | |
| def update(self, new_track, frame_id): | |
| """Update the YOLOv8 instance with new track and frame ID.""" | |
| if new_track.curr_feat is not None: | |
| self.update_features(new_track.curr_feat) | |
| super().update(new_track, frame_id) | |
| def tlwh(self): | |
| """Get current position in bounding box format `(top left x, top left y, | |
| width, height)`. | |
| """ | |
| if self.mean is None: | |
| return self._tlwh.copy() | |
| ret = self.mean[:4].copy() | |
| ret[:2] -= ret[2:] / 2 | |
| return ret | |
| def multi_predict(stracks): | |
| """Predicts the mean and covariance of multiple object tracks using shared Kalman filter.""" | |
| if len(stracks) <= 0: | |
| return | |
| multi_mean = np.asarray([st.mean.copy() for st in stracks]) | |
| multi_covariance = np.asarray([st.covariance for st in stracks]) | |
| for i, st in enumerate(stracks): | |
| if st.state != TrackState.Tracked: | |
| multi_mean[i][6] = 0 | |
| multi_mean[i][7] = 0 | |
| multi_mean, multi_covariance = BOTrack.shared_kalman.multi_predict(multi_mean, multi_covariance) | |
| for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)): | |
| stracks[i].mean = mean | |
| stracks[i].covariance = cov | |
| def convert_coords(self, tlwh): | |
| """Converts Top-Left-Width-Height bounding box coordinates to X-Y-Width-Height format.""" | |
| return self.tlwh_to_xywh(tlwh) | |
| def tlwh_to_xywh(tlwh): | |
| """Convert bounding box to format `(center x, center y, width, | |
| height)`. | |
| """ | |
| ret = np.asarray(tlwh).copy() | |
| ret[:2] += ret[2:] / 2 | |
| return ret | |
| class BOTSORT(BYTETracker): | |
| def __init__(self, args, frame_rate=30): | |
| """Initialize YOLOv8 object with ReID module and GMC algorithm.""" | |
| super().__init__(args, frame_rate) | |
| # ReID module | |
| self.proximity_thresh = args.proximity_thresh | |
| self.appearance_thresh = args.appearance_thresh | |
| if args.with_reid: | |
| # Haven't supported BoT-SORT(reid) yet | |
| self.encoder = None | |
| # self.gmc = GMC(method=args.cmc_method, verbose=[args.name, args.ablation]) | |
| self.gmc = GMC(method=args.cmc_method) | |
| def get_kalmanfilter(self): | |
| """Returns an instance of KalmanFilterXYWH for object tracking.""" | |
| return KalmanFilterXYWH() | |
| def init_track(self, dets, scores, cls, img=None): | |
| """Initialize track with detections, scores, and classes.""" | |
| if len(dets) == 0: | |
| return [] | |
| if self.args.with_reid and self.encoder is not None: | |
| features_keep = self.encoder.inference(img, dets) | |
| return [BOTrack(xyxy, s, c, f) for (xyxy, s, c, f) in zip(dets, scores, cls, features_keep)] # detections | |
| else: | |
| return [BOTrack(xyxy, s, c) for (xyxy, s, c) in zip(dets, scores, cls)] # detections | |
| def get_dists(self, tracks, detections): | |
| """Get distances between tracks and detections using IoU and (optionally) ReID embeddings.""" | |
| dists = matching.iou_distance(tracks, detections) | |
| dists_mask = (dists > self.proximity_thresh) | |
| # TODO: mot20 | |
| # if not self.args.mot20: | |
| dists = matching.fuse_score(dists, detections) | |
| if self.args.with_reid and self.encoder is not None: | |
| emb_dists = matching.embedding_distance(tracks, detections) / 2.0 | |
| emb_dists[emb_dists > self.appearance_thresh] = 1.0 | |
| emb_dists[dists_mask] = 1.0 | |
| dists = np.minimum(dists, emb_dists) | |
| return dists | |
| def multi_predict(self, tracks): | |
| """Predict and track multiple objects with YOLOv8 model.""" | |
| BOTrack.multi_predict(tracks) | |