Spaces:
Sleeping
Sleeping
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| from pathlib import Path | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| from ultralytics.data import YOLODataset | |
| from ultralytics.data.augment import Compose, Format, v8_transforms | |
| from ultralytics.models.yolo.detect import DetectionValidator | |
| from ultralytics.utils import colorstr, ops | |
| __all__ = 'RTDETRValidator', # tuple or list | |
| # TODO: Temporarily, RT-DETR does not need padding. | |
| class RTDETRDataset(YOLODataset): | |
| def __init__(self, *args, data=None, **kwargs): | |
| super().__init__(*args, data=data, use_segments=False, use_keypoints=False, **kwargs) | |
| # NOTE: add stretch version load_image for rtdetr mosaic | |
| def load_image(self, i): | |
| """Loads 1 image from dataset index 'i', returns (im, resized hw).""" | |
| im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i] | |
| if im is None: # not cached in RAM | |
| if fn.exists(): # load npy | |
| im = np.load(fn) | |
| else: # read image | |
| im = cv2.imread(f) # BGR | |
| if im is None: | |
| raise FileNotFoundError(f'Image Not Found {f}') | |
| h0, w0 = im.shape[:2] # orig hw | |
| im = cv2.resize(im, (self.imgsz, self.imgsz), interpolation=cv2.INTER_LINEAR) | |
| # Add to buffer if training with augmentations | |
| if self.augment: | |
| self.ims[i], self.im_hw0[i], self.im_hw[i] = im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized | |
| self.buffer.append(i) | |
| if len(self.buffer) >= self.max_buffer_length: | |
| j = self.buffer.pop(0) | |
| self.ims[j], self.im_hw0[j], self.im_hw[j] = None, None, None | |
| return im, (h0, w0), im.shape[:2] | |
| return self.ims[i], self.im_hw0[i], self.im_hw[i] | |
| def build_transforms(self, hyp=None): | |
| """Temporarily, only for evaluation.""" | |
| if self.augment: | |
| hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0 | |
| hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0 | |
| transforms = v8_transforms(self, self.imgsz, hyp, stretch=True) | |
| else: | |
| # transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scaleFill=True)]) | |
| transforms = Compose([]) | |
| transforms.append( | |
| Format(bbox_format='xywh', | |
| normalize=True, | |
| return_mask=self.use_segments, | |
| return_keypoint=self.use_keypoints, | |
| batch_idx=True, | |
| mask_ratio=hyp.mask_ratio, | |
| mask_overlap=hyp.overlap_mask)) | |
| return transforms | |
| class RTDETRValidator(DetectionValidator): | |
| def build_dataset(self, img_path, mode='val', batch=None): | |
| """Build YOLO Dataset | |
| Args: | |
| img_path (str): Path to the folder containing images. | |
| mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. | |
| batch (int, optional): Size of batches, this is for `rect`. Defaults to None. | |
| """ | |
| return RTDETRDataset( | |
| img_path=img_path, | |
| imgsz=self.args.imgsz, | |
| batch_size=batch, | |
| augment=False, # no augmentation | |
| hyp=self.args, | |
| rect=False, # no rect | |
| cache=self.args.cache or None, | |
| prefix=colorstr(f'{mode}: '), | |
| data=self.data) | |
| def postprocess(self, preds): | |
| """Apply Non-maximum suppression to prediction outputs.""" | |
| bs, _, nd = preds[0].shape | |
| bboxes, scores = preds[0].split((4, nd - 4), dim=-1) | |
| bboxes *= self.args.imgsz | |
| outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs | |
| for i, bbox in enumerate(bboxes): # (300, 4) | |
| bbox = ops.xywh2xyxy(bbox) | |
| score, cls = scores[i].max(-1) # (300, ) | |
| # Do not need threshold for evaluation as only got 300 boxes here. | |
| # idx = score > self.args.conf | |
| pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1) # filter | |
| # sort by confidence to correctly get internal metrics. | |
| pred = pred[score.argsort(descending=True)] | |
| outputs[i] = pred # [idx] | |
| return outputs | |
| def update_metrics(self, preds, batch): | |
| """Metrics.""" | |
| for si, pred in enumerate(preds): | |
| idx = batch['batch_idx'] == si | |
| cls = batch['cls'][idx] | |
| bbox = batch['bboxes'][idx] | |
| nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions | |
| shape = batch['ori_shape'][si] | |
| correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init | |
| self.seen += 1 | |
| if npr == 0: | |
| if nl: | |
| self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1))) | |
| if self.args.plots: | |
| self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1)) | |
| continue | |
| # Predictions | |
| if self.args.single_cls: | |
| pred[:, 5] = 0 | |
| predn = pred.clone() | |
| predn[..., [0, 2]] *= shape[1] / self.args.imgsz # native-space pred | |
| predn[..., [1, 3]] *= shape[0] / self.args.imgsz # native-space pred | |
| # Evaluate | |
| if nl: | |
| tbox = ops.xywh2xyxy(bbox) # target boxes | |
| tbox[..., [0, 2]] *= shape[1] # native-space pred | |
| tbox[..., [1, 3]] *= shape[0] # native-space pred | |
| labelsn = torch.cat((cls, tbox), 1) # native-space labels | |
| # NOTE: To get correct metrics, the inputs of `_process_batch` should always be float32 type. | |
| correct_bboxes = self._process_batch(predn.float(), labelsn) | |
| # TODO: maybe remove these `self.` arguments as they already are member variable | |
| if self.args.plots: | |
| self.confusion_matrix.process_batch(predn, labelsn) | |
| self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls) | |
| # Save | |
| if self.args.save_json: | |
| self.pred_to_json(predn, batch['im_file'][si]) | |
| if self.args.save_txt: | |
| file = self.save_dir / 'labels' / f'{Path(batch["im_file"][si]).stem}.txt' | |
| self.save_one_txt(predn, self.args.save_conf, shape, file) | |