Spaces:
Running
on
Zero
Running
on
Zero
| import ast | |
| import math | |
| import base64 | |
| from io import BytesIO | |
| import torch | |
| import decord | |
| import imageio | |
| import numpy as np | |
| from PIL import Image | |
| from decord import VideoReader, cpu | |
| from moviepy.editor import VideoFileClip | |
| from transformers import StoppingCriteria | |
| from scenedetect import open_video, SceneManager | |
| from scenedetect.detectors import ContentDetector | |
| from scenedetect.stats_manager import StatsManager | |
| from .constants import NUM_FRAMES, MAX_FRAMES, NUM_FRAMES_PER_SECOND, MMODAL_INDEX_TOKEN, IMAGE_TOKEN_INDEX | |
| def merge_scenes(cut_list, cut_scores, scene_list,num_frames,max_scene_num=4, num_frame_per_scene=8, min_frames_per_scene=30): | |
| if len(scene_list) == len(cut_list) and len(scene_list) == 0: | |
| frame_ids = np.linspace(0, num_frames-1, num_frame_per_scene, dtype=int) # only one scene for current video | |
| return [frame_ids] | |
| scene_list, cut_results = merge_scenes_not_exeed_max_scene_num(cut_list,cut_scores,scene_list, max_scene_num) | |
| prev_cut_point = 0 | |
| list_of_scene_frames = [] | |
| for (cur_cut_point, _) in cut_results: | |
| frame_ids = list(np.linspace(prev_cut_point, cur_cut_point-1, num_frame_per_scene, dtype=int)) | |
| list_of_scene_frames.append(frame_ids) | |
| prev_cut_point = cur_cut_point | |
| if cur_cut_point < num_frames: | |
| frame_ids = np.linspace(cur_cut_point, num_frames-1, num_frame_per_scene, dtype=int) | |
| list_of_scene_frames.append(frame_ids) | |
| return list_of_scene_frames | |
| def merge_scenes_not_exeed_max_scene_num(cut_list,cut_scores, scene_list, max_scene_num): | |
| cut_frames = [ele.get_frames() for ele in cut_list] | |
| cut_results = list(zip(cut_frames, cut_scores)) | |
| while len(scene_list) > max_scene_num: | |
| min_idx = np.argmin(cut_scores) | |
| cut_frames = [ele for idx, ele in enumerate(cut_frames) if idx != min_idx] | |
| cut_scores = [ele for idx, ele in enumerate(cut_scores) if idx != min_idx] | |
| # merge scene list | |
| num_scenes = len(scene_list) | |
| #print("Current min_idx:", min_idx) | |
| s1 = scene_list[min_idx] | |
| s2 = scene_list[min_idx+1] | |
| new_scene = (s1[0], s2[1]) | |
| if min_idx == 0: | |
| # merge the first two scenes | |
| new_scene_list = [new_scene] + scene_list[2:] | |
| elif min_idx == num_scenes - 1: | |
| # # merge the last two scenes | |
| new_scene_list = scene_list[:min_idx-1] + [new_scene] | |
| else: | |
| new_scene_list = scene_list[:min_idx] + [new_scene] + scene_list[min_idx+2:] | |
| scene_list = new_scene_list | |
| cut_results = list(zip(cut_frames, cut_scores)) | |
| return scene_list, cut_results | |
| def split_video_into_scenes(video_path, threshold=27.0, max_scene_num=10, num_frame_per_scene=8): | |
| # Open video, create a scene manager, and add a detector. | |
| video = open_video(video_path) | |
| stats_manager = StatsManager() | |
| scene_manager = SceneManager(stats_manager) | |
| detector = ContentDetector(threshold=threshold) | |
| scene_manager.add_detector(detector) | |
| scene_manager.detect_scenes(video) | |
| scene_list = scene_manager.get_scene_list() | |
| cut_list = scene_manager.get_cut_list() | |
| num_frames = video.duration.get_frames() | |
| if len(scene_list) == len(cut_list) and len(scene_list) == 0: | |
| frame_ids = np.linspace(0, num_frames-1, num_frame_per_scene, dtype=int) # only one scene for current video | |
| return [frame_ids] | |
| assert len(scene_list) == len(cut_list) + 1, f"inconsistent lengths for scene list ({len(scene_list)}) vs. cut list ({len(cut_list)})" | |
| cut_frames = [ele.get_frames() for ele in cut_list] | |
| cut_scores = [stats_manager.get_metrics(f, ["delta_lum"])[0] for f in cut_frames] | |
| cut_results = list(zip(cut_frames, cut_scores)) | |
| #print(f"Original cut scores: {cut_scores}, original scene list: {scene_list}") | |
| while len(scene_list) > max_scene_num: | |
| min_idx = np.argmin(cut_scores) | |
| cut_frames = [ele for idx, ele in enumerate(cut_frames) if idx != min_idx] | |
| cut_scores = [ele for idx, ele in enumerate(cut_scores) if idx != min_idx] | |
| # merge scene list | |
| num_scenes = len(scene_list) | |
| #print("Current min_idx:", min_idx) | |
| s1 = scene_list[min_idx] | |
| s2 = scene_list[min_idx+1] | |
| new_scene = (s1[0], s2[1]) | |
| if min_idx == 0: | |
| # merge the first two scenes | |
| new_scene_list = [new_scene] + scene_list[2:] | |
| elif min_idx == num_scenes - 1: | |
| # # merge the last two scenes | |
| new_scene_list = scene_list[:min_idx-1] + [new_scene] | |
| else: | |
| new_scene_list = scene_list[:min_idx] + [new_scene] + scene_list[min_idx+2:] | |
| scene_list = new_scene_list | |
| cut_results = list(zip(cut_frames, cut_scores)) | |
| #print(f"Cut scores after merging: {cut_scores}, scene list: {scene_list}") | |
| prev_cut_point = 0 | |
| list_of_scene_frames = [] | |
| for (cur_cut_point, _) in cut_results: | |
| frame_ids = list(np.linspace(prev_cut_point, cur_cut_point-1, num_frame_per_scene, dtype=int)) | |
| list_of_scene_frames.append(frame_ids) | |
| prev_cut_point = cur_cut_point | |
| if cur_cut_point < num_frames: | |
| frame_ids = np.linspace(cur_cut_point, num_frames-1, num_frame_per_scene, dtype=int) | |
| list_of_scene_frames.append(frame_ids) | |
| # print(f"Finally got {len(list_of_scene_frames)} scenes where we evenly sampled {num_frame_per_scene} frames for each scene") | |
| return list_of_scene_frames | |
| def select_best_resolution(original_size, possible_resolutions): | |
| """ | |
| Selects the best resolution from a list of possible resolutions based on the original size. | |
| Args: | |
| original_size (tuple): The original size of the image in the format (width, height). | |
| possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. | |
| Returns: | |
| tuple: The best fit resolution in the format (width, height). | |
| """ | |
| original_width, original_height = original_size | |
| best_fit = None | |
| max_effective_resolution = 0 | |
| min_wasted_resolution = float('inf') | |
| for width, height in possible_resolutions: | |
| scale = min(width / original_width, height / original_height) | |
| downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale) | |
| effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height) | |
| wasted_resolution = (width * height) - effective_resolution | |
| if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution): | |
| max_effective_resolution = effective_resolution | |
| min_wasted_resolution = wasted_resolution | |
| best_fit = (width, height) | |
| return best_fit | |
| def resize_and_pad_image(image, target_resolution): | |
| """ | |
| Resize and pad an image to a target resolution while maintaining aspect ratio. | |
| Args: | |
| image (PIL.Image.Image): The input image. | |
| target_resolution (tuple): The target resolution (width, height) of the image. | |
| Returns: | |
| PIL.Image.Image: The resized and padded image. | |
| """ | |
| original_width, original_height = image.size | |
| target_width, target_height = target_resolution | |
| scale_w = target_width / original_width | |
| scale_h = target_height / original_height | |
| if scale_w < scale_h: | |
| new_width = target_width | |
| new_height = min(math.ceil(original_height * scale_w), target_height) | |
| else: | |
| new_height = target_height | |
| new_width = min(math.ceil(original_width * scale_h), target_width) | |
| # Resize the image | |
| resized_image = image.resize((new_width, new_height)) | |
| new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0)) | |
| paste_x = (target_width - new_width) // 2 | |
| paste_y = (target_height - new_height) // 2 | |
| new_image.paste(resized_image, (paste_x, paste_y)) | |
| return new_image | |
| def divide_to_patches(image, patch_size): | |
| """ | |
| Divides an image into patches of a specified size. | |
| Args: | |
| image (PIL.Image.Image): The input image. | |
| patch_size (int): The size of each patch. | |
| Returns: | |
| list: A list of PIL.Image.Image objects representing the patches. | |
| """ | |
| patches = [] | |
| width, height = image.size | |
| for i in range(0, height, patch_size): | |
| for j in range(0, width, patch_size): | |
| box = (j, i, j + patch_size, i + patch_size) | |
| patch = image.crop(box) | |
| patches.append(patch) | |
| return patches | |
| def get_anyres_image_grid_shape(image_size, grids, patch_size): | |
| """ | |
| Calculate the shape of the image patch grid after the preprocessing for images of any resolution. | |
| Args: | |
| image_size (tuple): The size of the input image in the format (width, height). | |
| grids (str, List[tuple[int]]): Patch segmentation grid. | |
| patch_size (int): The size of each image patch. | |
| Returns: | |
| tuple: The shape of the image patch grid in the format (width, height). | |
| """ | |
| if type(grids) is list: | |
| possible_resolutions = [(x * patch_size, y * patch_size) for x, y in grids] | |
| else: | |
| possible_resolutions = [(x * patch_size, y * patch_size) for x, y in ast.literal_eval(grids)] | |
| width, height = select_best_resolution(image_size, possible_resolutions) | |
| return width // patch_size, height // patch_size | |
| def process_anyres_image(image, grids, patch_size): | |
| """ | |
| Process an image with variable resolutions. | |
| Args: | |
| image (PIL.Image.Image): The input image to be processed. | |
| grids (str, List[tuple[int]]): Patch segmentation grid. | |
| patch_size (int): The size of the patches to be extracted. | |
| Returns: | |
| torch.Tensor: A tensor containing the processed image patches. | |
| """ | |
| if type(grids) is list: | |
| possible_resolutions = [(x * patch_size, y * patch_size) for x, y in grids] | |
| else: | |
| possible_resolutions = [(x * patch_size, y * patch_size) for x, y in ast.literal_eval(grids)] | |
| best_resolution = select_best_resolution(image.size, possible_resolutions) | |
| image_padded = resize_and_pad_image(image, best_resolution) | |
| patches = divide_to_patches(image_padded, patch_size) | |
| image_original_resize = resize_and_pad_image(image, (patch_size, patch_size)) | |
| image_patches = [image_original_resize] + patches | |
| return image_patches | |
| def chunk_list(input_list, chunk_size): | |
| return [input_list[i:i + chunk_size] for i in range(0, len(input_list), chunk_size)] | |
| def frame_expansion(frame_list, n): | |
| assert len(frame_list) == n * n | |
| width, height = frame_list[0].width, frame_list[0].height | |
| expanded_width = n * width | |
| expanded_height = n * height | |
| expanded_frame = Image.new('RGB', (expanded_width, expanded_height)) | |
| for i in range(n): | |
| for j in range(n): | |
| frame = frame_list[i * n + j] | |
| coordinate = (j*width, i*height) | |
| expanded_frame.paste(frame, coordinate) | |
| return expanded_frame | |
| def load_image_from_base64(image): | |
| return Image.open(BytesIO(base64.b64decode(image))) | |
| def expand2square(pil_img, background_color): | |
| width, height = pil_img.size | |
| if width == height: | |
| return pil_img | |
| elif width > height: | |
| result = Image.new(pil_img.mode, (width, width), background_color) | |
| result.paste(pil_img, (0, (width - height) // 2)) | |
| return result | |
| else: | |
| result = Image.new(pil_img.mode, (height, height), background_color) | |
| result.paste(pil_img, ((height - width) // 2, 0)) | |
| return result | |
| def process_images(images, image_processor, model_cfg): | |
| image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) | |
| new_images = [] | |
| #print("Current image_aspect_ratio:", image_aspect_ratio) | |
| if image_aspect_ratio == 'pad': | |
| for image in images: | |
| image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean)) | |
| image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
| new_images.append(image) | |
| else: | |
| return image_processor(images, return_tensors='pt')['pixel_values'] | |
| if all(x.shape == new_images[0].shape for x in new_images): | |
| new_images = torch.stack(new_images, dim=0) | |
| return new_images | |
| def process_videos(frames, image_processor, model_cfg): | |
| # this function only used during inference | |
| # image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) | |
| # new_frames = [] | |
| # print("Current image_aspect_ratio:", image_aspect_ratio) | |
| # if image_aspect_ratio == 'pad': | |
| # for image in frames: | |
| # image = Image.fromarray(image) | |
| # image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean)) | |
| # image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
| # new_frames.append(image) | |
| # else: | |
| # return image_processor(frames, return_tensors='pt')['pixel_values'] | |
| # if all(x.shape == new_frames[0].shape for x in new_frames): | |
| # new_frames = torch.stack(new_frames, dim=0) | |
| new_frames = image_processor.preprocess(frames, return_tensors='pt')['pixel_values'] # do not pad for video frames | |
| return new_frames | |
| def create_photo_grid(arr, rows=None, cols=None): | |
| """ | |
| Create a photo grid from a 4D numpy array with shape [t, h, w, c]. | |
| Parameters: | |
| arr (numpy.ndarray): Input array with shape [t, h, w, c]. | |
| rows (int): Optional. Number of rows in the grid. If not set, it will be determined based on `cols` or the square root of `t`. | |
| cols (int): Optional. Number of columns in the grid. If not set, it will be determined based on `rows` or the square root of `t`. | |
| Returns: | |
| numpy.ndarray: A 3D numpy array representing the photo grid. | |
| """ | |
| if isinstance(arr, list): | |
| if isinstance(arr[0], Image.Image): | |
| arr = np.stack([np.array(img) for img in arr]) | |
| elif isinstance(arr[0], np.ndarray): | |
| arr = np.stack(arr) | |
| else: | |
| raise ValueError("Invalid input type. Expected list of Images or numpy arrays.") | |
| t, h, w, c = arr.shape | |
| # Calculate the number of rows and columns if not provided | |
| if rows is None and cols is None: | |
| rows = math.ceil(math.sqrt(t)) | |
| cols = math.ceil(t / rows) | |
| elif rows is None: | |
| rows = math.ceil(t / cols) | |
| elif cols is None: | |
| cols = math.ceil(t / rows) | |
| # Check if the grid can hold all the images | |
| if rows * cols < t: | |
| raise ValueError(f"Not enough grid cells ({rows}x{cols}) to hold all images ({t}).") | |
| # Create the grid array with appropriate height and width | |
| grid_height = h * rows | |
| grid_width = w * cols | |
| grid = np.zeros((grid_height, grid_width, c), dtype=arr.dtype) | |
| # Fill the grid with images | |
| for i in range(t): | |
| row_idx = i // cols | |
| col_idx = i % cols | |
| grid[row_idx*h:(row_idx+1)*h, col_idx*w:(col_idx+1)*w, :] = arr[i] | |
| return grid | |
| def process_image(image_path, processor, aspect_ratio='pad', num_frames=NUM_FRAMES, image_grid=False): | |
| image = Image.open(image_path).convert('RGB') | |
| if image_grid: | |
| pg = np.stack([np.array(image)] * num_frames) | |
| grid_h = grid_w = math.ceil(math.sqrt(num_frames)) | |
| pg = create_photo_grid(pg, grid_h, grid_w) | |
| images = [pg, np.array(image)] | |
| else: | |
| images = [np.array(image)] | |
| if aspect_ratio == 'pad': | |
| images = [Image.fromarray(f) for f in images] | |
| images = [expand2square(image, tuple(int(x*255) for x in processor.image_mean)) for image in images] | |
| else: | |
| images = [Image.fromarray(f) for f in images] | |
| images = processor.preprocess(images, return_tensors='pt')['pixel_values'] | |
| return images | |
| def process_video(video_path, processor, aspect_ratio='pad', num_frames=NUM_FRAMES, image_grid=False, sample_scheme='uniform'): | |
| def frame_sample(duration, mode='uniform', local_fps=None): | |
| if mode == 'uniform': | |
| return np.linspace(0, duration-1, num_frames, dtype=int) | |
| elif mode == 'fps': | |
| assert local_fps is not None | |
| segment_len = min(local_fps // NUM_FRAMES_PER_SECOND, duration) | |
| return np.arange(segment_len // 2, duration, segment_len, dtype=int) | |
| else: | |
| raise ImportError(f'Unsupported frame sampling mode: {mode}') | |
| if isinstance(video_path, str): | |
| if video_path.endswith('.gif'): | |
| video_gif = imageio.get_reader(video_path) | |
| duration, local_fps = len(video_gif), 10 | |
| frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps) | |
| # limit the max input frames | |
| if len(frame_id_list) > MAX_FRAMES: | |
| frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int) | |
| video_data = [frame for index, frame in enumerate(video_gif) if index in frame_id_list] | |
| # added by lixin4ever, include the support of .webm files from sthsthv2 | |
| elif video_path.endswith('.webm'): | |
| video_webm = VideoFileClip(video_path) | |
| video_frames = np.array(list(video_webm.iter_frames())) | |
| duration, local_fps = len(video_frames), video_webm.fps | |
| frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps) | |
| # limit the max input frames | |
| if len(frame_id_list) > MAX_FRAMES: | |
| frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int) | |
| video_data = video_frames[frame_id_list] | |
| else: | |
| decord_vr = VideoReader(uri=video_path, ctx=cpu(0)) if "Valley/finetune/source_videos" not in video_path else VideoReader(uri=video_path, ctx=cpu(0), num_threads=1) # add num_threads=1 for Valley videos | |
| duration, local_fps = len(decord_vr), float(decord_vr.get_avg_fps()) | |
| frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps) | |
| # limit the max input frames | |
| if len(frame_id_list) > MAX_FRAMES: | |
| frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int) | |
| try: | |
| video_data = decord_vr.get_batch(frame_id_list).numpy() | |
| except: | |
| video_data = decord_vr.get_batch(frame_id_list).asnumpy() | |
| # if self.data_args.use_temp_aug: | |
| # frame_id_list = np.linspace(0, duration-1, num_frames * 2 * 2, dtype=int) | |
| # video_data = decord_vr.get_batch(frame_id_list) | |
| # video_frames = [Image.fromarray(f) for f in video_data.numpy()] | |
| # chunked_video_frames = chunk_list(video_frames, 2*2) | |
| # video_data = [frame_expansion(frame_list, 2) for frame_list in chunked_video_frames] | |
| else: | |
| video = video_path | |
| frame_id_list = frame_sample(duration, mode='uniform') | |
| video_data = [video.get_data(frame_id) for frame_id in frame_id_list] | |
| if image_grid: | |
| grid_h = grid_w = math.ceil(math.sqrt(num_frames)) | |
| pg = create_photo_grid(video_data, grid_h, grid_w) | |
| video_data = [pg, *video_data] | |
| if aspect_ratio == 'pad': | |
| images = [Image.fromarray(f.numpy() if isinstance(f, torch.Tensor) else f) for f in video_data] | |
| images = [expand2square(image, tuple(int(x*255) for x in processor.image_mean)) for image in images] | |
| video = processor.preprocess(images, return_tensors='pt')['pixel_values'] | |
| else: | |
| images = [Image.fromarray(f.numpy() if isinstance(f, torch.Tensor) else f) for f in video_data] | |
| video = processor.preprocess(images, return_tensors='pt')['pixel_values'] | |
| return video | |
| def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): | |
| prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')] | |
| def insert_separator(X, sep): | |
| return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] | |
| input_ids = [] | |
| offset = 0 | |
| if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: | |
| offset = 1 | |
| input_ids.append(prompt_chunks[0][0]) | |
| for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): | |
| input_ids.extend(x[offset:]) | |
| if return_tensors is not None: | |
| if return_tensors == 'pt': | |
| return torch.tensor(input_ids, dtype=torch.long) | |
| raise ValueError(f'Unsupported tensor type: {return_tensors}') | |
| return input_ids | |
| def tokenizer_MMODAL_token(prompt, tokenizer, MMODAL_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): | |
| prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split(f'<{MMODAL_INDEX_TOKEN[MMODAL_token_index].lower()}>')] | |
| num_prompt_chunks = len(prompt.split(f'<{MMODAL_INDEX_TOKEN[MMODAL_token_index].lower()}>')) | |
| def insert_separator(X, sep): | |
| return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] | |
| input_ids = [] | |
| offset = 0 | |
| if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: | |
| offset = 1 | |
| input_ids.append(prompt_chunks[0][0]) | |
| for x in insert_separator(prompt_chunks, [MMODAL_token_index] * (offset + 1)): | |
| input_ids.extend(x[offset:]) | |
| if return_tensors is not None: | |
| if return_tensors == 'pt': | |
| return torch.tensor(input_ids, dtype=torch.long) | |
| raise ValueError(f'Unsupported tensor type: {return_tensors}') | |
| return input_ids | |
| def get_model_name_from_path(model_path): | |
| model_path = model_path.strip("/") | |
| model_paths = model_path.split("/") | |
| if model_paths[-1].startswith('checkpoint-'): | |
| return model_paths[-2] + "_" + model_paths[-1] | |
| else: | |
| return model_paths[-1] | |
| class KeywordsStoppingCriteria(StoppingCriteria): | |
| def __init__(self, keywords, tokenizer, input_ids): | |
| self.keywords = keywords | |
| self.keyword_ids = [] | |
| self.max_keyword_len = 0 | |
| for keyword in keywords: | |
| cur_keyword_ids = tokenizer(keyword).input_ids | |
| if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: | |
| cur_keyword_ids = cur_keyword_ids[1:] | |
| if len(cur_keyword_ids) > self.max_keyword_len: | |
| self.max_keyword_len = len(cur_keyword_ids) | |
| self.keyword_ids.append(torch.tensor(cur_keyword_ids)) | |
| self.tokenizer = tokenizer | |
| self.start_len = input_ids.shape[1] | |
| def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
| offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) | |
| self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] | |
| for keyword_id in self.keyword_ids: | |
| if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all(): | |
| return True | |
| outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] | |
| for keyword in self.keywords: | |
| if keyword in outputs: | |
| return True | |
| return False | |
| def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
| outputs = [] | |
| for i in range(output_ids.shape[0]): | |
| outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores)) | |
| return all(outputs) | |