File size: 6,673 Bytes
8fc365a
 
 
 
 
 
 
9ad3d02
 
0e3b186
9bfea2a
ed069a9
9ad3d02
 
6357165
9ad3d02
8fc365a
 
 
 
 
 
 
 
 
9bfea2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ad3d02
 
 
0e3b186
9bfea2a
 
 
 
 
8fc365a
9ad3d02
8fc365a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ad3d02
 
 
 
 
 
 
 
 
 
 
 
8fc365a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bfea2a
8fc365a
 
 
 
 
 
9bfea2a
8fc365a
9bfea2a
8fc365a
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import gradio as gr
import numpy as np
import spaces
import torch
import random
import os

# from diffusers import QwenImageEditInpaintPipeline
from optimization import optimize_pipeline_
from diffusers.utils import load_image
from diffusers import FlowMatchEulerDiscreteScheduler
from qwenimage.pipeline_qwenimage_edit_inpaint import QwenImageEditInpaintPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
import math

from PIL import Image

# Set environment variable for parallel loading
os.environ["HF_ENABLE_PARALLEL_LOADING"] = "YES"

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# Initialize Qwen Image Edit pipeline
# Scheduler configuration for Lightning
scheduler_config = {
    "base_image_seq_len": 256,
    "base_shift": math.log(3),
    "invert_sigmas": False,
    "max_image_seq_len": 8192,
    "max_shift": math.log(3),
    "num_train_timesteps": 1000,
    "shift": 1.0,
    "shift_terminal": None,
    "stochastic_sampling": False,
    "time_shift_type": "exponential",
    "use_beta_sigmas": False,
    "use_dynamic_shifting": True,
    "use_exponential_sigmas": False,
    "use_karras_sigmas": False,
}

# Initialize scheduler with Lightning config
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)


pipe = QwenImageEditInpaintPipeline.from_pretrained("Qwen/Qwen-Image-Edit", scheduler=scheduler, torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights(
        "lightx2v/Qwen-Image-Lightning", 
        weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
    )
pipe.fuse_lora()

pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())



# dummy_mask  = load_image("https://github.com/Trgtuan10/Image_storage/blob/main/mask_cat.png?raw=true")

# # --- Ahead-of-time compilation ---
# optimize_pipeline_(pipe, image=Image.new("RGB", (1328, 1328)), prompt="prompt", mask_image=dummy_mask)

@spaces.GPU(duration=120)
def infer(edit_images, prompt, negative_prompt="", seed=42, randomize_seed=False, strength=1.0, num_inference_steps=35, true_cfg_scale=4.0, progress=gr.Progress(track_tqdm=True)):
    image = edit_images["background"]
    mask = edit_images["layers"][0]
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    # Generate image using Qwen pipeline
    result_image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=image,
        mask_image=mask,
        strength=strength,
        num_inference_steps=num_inference_steps,
        true_cfg_scale=true_cfg_scale,
        generator=torch.Generator(device="cuda").manual_seed(seed)
    ).images[0]
    
    return result_image, seed
    
examples = [
    "change the hat to red",
    "make the background a beautiful sunset",
    "replace the object with a flower vase",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 1000px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.HTML("""
        <div id="logo-title">
            <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Edit Logo" width="400" style="display: block; margin: 0 auto;">
            <h2 style="font-style: italic;color: #5b47d1;margin-top: -27px !important;margin-left: 133px;">Inapint</h2>
        </div>
        """)
        gr.Markdown("""
        
        Inpaint images with Qwen Image Edit. [Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. 
        
        This demo uses the [Qwen-Image-Lightning](https://huggingface.co/lightx2v/Qwen-Image-Lightning) LoRA with AoT compilation and FA3 for accelerated 8-step inference.
        Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.
        """)
        with gr.Row():
            with gr.Column():
                edit_image = gr.ImageEditor(
                    label='Upload and draw mask for inpainting',
                    type='pil',
                    sources=["upload", "webcam"],
                    image_mode='RGB',
                    layers=False,
                    brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
                    height=600
                )
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt (e.g., 'change the hat to red')",
                    container=False,
                )
                negative_prompt = gr.Text(
                    label="Negative Prompt",
                    show_label=True,
                    max_lines=1,
                    placeholder="Enter what you don't want (optional)",
                    container=False,
                    value=""
                )
                run_button = gr.Button("Run")
                
            result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                strength = gr.Slider(
                    label="Strength",
                    minimum=0.0,
                    maximum=2.0,
                    step=0.1,
                    value=1.0,
                    info="Controls how much the inpainted region should change"
                )
                
                true_cfg_scale = gr.Slider(
                    label="True CFG Scale",
                    minimum=1.0,
                    maximum=20.0,
                    step=0.5,
                    value=1.0,
                    info="Classifier-free guidance scale"
                )
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=10,
                    maximum=50,
                    step=1,
                    value=8,
                )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [edit_image, prompt, negative_prompt, seed, randomize_seed, strength, num_inference_steps, true_cfg_scale],
        outputs = [result, seed]
    )

demo.launch()