Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,673 Bytes
8fc365a 9ad3d02 0e3b186 9bfea2a ed069a9 9ad3d02 6357165 9ad3d02 8fc365a 9bfea2a 9ad3d02 0e3b186 9bfea2a 8fc365a 9ad3d02 8fc365a 9ad3d02 8fc365a 9bfea2a 8fc365a 9bfea2a 8fc365a 9bfea2a 8fc365a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import gradio as gr
import numpy as np
import spaces
import torch
import random
import os
# from diffusers import QwenImageEditInpaintPipeline
from optimization import optimize_pipeline_
from diffusers.utils import load_image
from diffusers import FlowMatchEulerDiscreteScheduler
from qwenimage.pipeline_qwenimage_edit_inpaint import QwenImageEditInpaintPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
import math
from PIL import Image
# Set environment variable for parallel loading
os.environ["HF_ENABLE_PARALLEL_LOADING"] = "YES"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Initialize Qwen Image Edit pipeline
# Scheduler configuration for Lightning
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
# Initialize scheduler with Lightning config
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
pipe = QwenImageEditInpaintPipeline.from_pretrained("Qwen/Qwen-Image-Edit", scheduler=scheduler, torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights(
"lightx2v/Qwen-Image-Lightning",
weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
)
pipe.fuse_lora()
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
# dummy_mask = load_image("https://github.com/Trgtuan10/Image_storage/blob/main/mask_cat.png?raw=true")
# # --- Ahead-of-time compilation ---
# optimize_pipeline_(pipe, image=Image.new("RGB", (1328, 1328)), prompt="prompt", mask_image=dummy_mask)
@spaces.GPU(duration=120)
def infer(edit_images, prompt, negative_prompt="", seed=42, randomize_seed=False, strength=1.0, num_inference_steps=35, true_cfg_scale=4.0, progress=gr.Progress(track_tqdm=True)):
image = edit_images["background"]
mask = edit_images["layers"][0]
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Generate image using Qwen pipeline
result_image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=image,
mask_image=mask,
strength=strength,
num_inference_steps=num_inference_steps,
true_cfg_scale=true_cfg_scale,
generator=torch.Generator(device="cuda").manual_seed(seed)
).images[0]
return result_image, seed
examples = [
"change the hat to red",
"make the background a beautiful sunset",
"replace the object with a flower vase",
]
css="""
#col-container {
margin: 0 auto;
max-width: 1000px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""
<div id="logo-title">
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Edit Logo" width="400" style="display: block; margin: 0 auto;">
<h2 style="font-style: italic;color: #5b47d1;margin-top: -27px !important;margin-left: 133px;">Inapint</h2>
</div>
""")
gr.Markdown("""
Inpaint images with Qwen Image Edit. [Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series.
This demo uses the [Qwen-Image-Lightning](https://huggingface.co/lightx2v/Qwen-Image-Lightning) LoRA with AoT compilation and FA3 for accelerated 8-step inference.
Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.
""")
with gr.Row():
with gr.Column():
edit_image = gr.ImageEditor(
label='Upload and draw mask for inpainting',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
height=600
)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt (e.g., 'change the hat to red')",
container=False,
)
negative_prompt = gr.Text(
label="Negative Prompt",
show_label=True,
max_lines=1,
placeholder="Enter what you don't want (optional)",
container=False,
value=""
)
run_button = gr.Button("Run")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
strength = gr.Slider(
label="Strength",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
info="Controls how much the inpainted region should change"
)
true_cfg_scale = gr.Slider(
label="True CFG Scale",
minimum=1.0,
maximum=20.0,
step=0.5,
value=1.0,
info="Classifier-free guidance scale"
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=50,
step=1,
value=8,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [edit_image, prompt, negative_prompt, seed, randomize_seed, strength, num_inference_steps, true_cfg_scale],
outputs = [result, seed]
)
demo.launch() |