Spaces:
Runtime error
Runtime error
Upload 14 files
Browse files- .gitattributes +6 -0
- README.md +6 -6
- alphabet_map.json +28 -0
- app.py +112 -0
- braille_map.json +65 -0
- convert.py +73 -0
- image/alpha-numeric.jpeg +0 -0
- image/gray_image.jpg +3 -0
- image/img_41.jpg +0 -0
- image/test_1.jpg +3 -0
- image/test_2.jpg +3 -0
- image/test_3.jpg +3 -0
- image/test_4.jpg +3 -0
- image/test_5.jpg +3 -0
- number_map.json +66 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
image/gray_image.jpg filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
image/test_1.jpg filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
image/test_2.jpg filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
image/test_3.jpg filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
image/test_4.jpg filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
image/test_5.jpg filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title: Braille
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: blue
|
| 5 |
-
colorTo:
|
| 6 |
sdk: streamlit
|
| 7 |
-
sdk_version: 1.
|
| 8 |
app_file: app.py
|
| 9 |
-
pinned:
|
| 10 |
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Braille Detection
|
| 3 |
+
emoji: 🕶
|
| 4 |
colorFrom: blue
|
| 5 |
+
colorTo: yellow
|
| 6 |
sdk: streamlit
|
| 7 |
+
sdk_version: 1.17.0
|
| 8 |
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
alphabet_map.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"a": "100000",
|
| 3 |
+
"b": "110000",
|
| 4 |
+
"c": "100100",
|
| 5 |
+
"d": "100110",
|
| 6 |
+
"e": "100010",
|
| 7 |
+
"f": "110100",
|
| 8 |
+
"g": "110110",
|
| 9 |
+
"h": "110010",
|
| 10 |
+
"i": "010100",
|
| 11 |
+
"j": "010110",
|
| 12 |
+
"k": "101000",
|
| 13 |
+
"l": "111000",
|
| 14 |
+
"m": "101100",
|
| 15 |
+
"n": "101110",
|
| 16 |
+
"o": "101010",
|
| 17 |
+
"p": "111100",
|
| 18 |
+
"q": "111110",
|
| 19 |
+
"r": "111010",
|
| 20 |
+
"s": "011100",
|
| 21 |
+
"t": "011110",
|
| 22 |
+
"u": "101001",
|
| 23 |
+
"v": "111001",
|
| 24 |
+
"w": "010111",
|
| 25 |
+
"x": "101101",
|
| 26 |
+
"y": "101111",
|
| 27 |
+
"z": "101011"
|
| 28 |
+
}
|
app.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Reference
|
| 3 |
+
- https://docs.streamlit.io/library/api-reference/layout
|
| 4 |
+
- https://github.com/CodingMantras/yolov8-streamlit-detection-tracking/blob/master/app.py
|
| 5 |
+
- https://huggingface.co/keremberke/yolov8m-valorant-detection/tree/main
|
| 6 |
+
- https://docs.ultralytics.com/usage/python/
|
| 7 |
+
"""
|
| 8 |
+
import time
|
| 9 |
+
import PIL
|
| 10 |
+
|
| 11 |
+
import streamlit as st
|
| 12 |
+
import torch
|
| 13 |
+
from ultralyticsplus import YOLO, render_result
|
| 14 |
+
|
| 15 |
+
from convert import convert_to_braille_unicode, parse_xywh_and_class
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def load_model(model_path):
|
| 19 |
+
"""load model from path"""
|
| 20 |
+
model = YOLO(model_path)
|
| 21 |
+
return model
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def load_image(image_path):
|
| 25 |
+
"""load image from path"""
|
| 26 |
+
image = PIL.Image.open(image_path)
|
| 27 |
+
return image
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# title
|
| 31 |
+
st.title("Braille Pattern Detection")
|
| 32 |
+
|
| 33 |
+
# sidebar
|
| 34 |
+
st.sidebar.header("Detection Config")
|
| 35 |
+
|
| 36 |
+
conf = float(st.sidebar.slider("Class Confidence", 10, 75, 15)) / 100
|
| 37 |
+
iou = float(st.sidebar.slider("IoU Threshold", 10, 75, 15)) / 100
|
| 38 |
+
|
| 39 |
+
model_path = "snoop2head/yolov8m-braille"
|
| 40 |
+
|
| 41 |
+
try:
|
| 42 |
+
model = load_model(model_path)
|
| 43 |
+
model.overrides["conf"] = conf # NMS confidence threshold
|
| 44 |
+
model.overrides["iou"] = iou # NMS IoU threshold
|
| 45 |
+
model.overrides["agnostic_nms"] = False # NMS class-agnostic
|
| 46 |
+
model.overrides["max_det"] = 1000 # maximum number of detections per image
|
| 47 |
+
|
| 48 |
+
except Exception as ex:
|
| 49 |
+
print(ex)
|
| 50 |
+
st.write(f"Unable to load model. Check the specified path: {model_path}")
|
| 51 |
+
|
| 52 |
+
source_img = None
|
| 53 |
+
|
| 54 |
+
source_img = st.sidebar.file_uploader(
|
| 55 |
+
"Choose an image...", type=("jpg", "jpeg", "png", "bmp", "webp")
|
| 56 |
+
)
|
| 57 |
+
col1, col2 = st.columns(2)
|
| 58 |
+
|
| 59 |
+
# left column of the page body
|
| 60 |
+
with col1:
|
| 61 |
+
if source_img is None:
|
| 62 |
+
default_image_path = "./images/alpha-numeric.jpeg"
|
| 63 |
+
image = load_image(default_image_path)
|
| 64 |
+
st.image(
|
| 65 |
+
default_image_path, caption="Example Input Image", use_column_width=True
|
| 66 |
+
)
|
| 67 |
+
else:
|
| 68 |
+
image = load_image(source_img)
|
| 69 |
+
st.image(source_img, caption="Uploaded Image", use_column_width=True)
|
| 70 |
+
|
| 71 |
+
# right column of the page body
|
| 72 |
+
with col2:
|
| 73 |
+
with st.spinner("Wait for it..."):
|
| 74 |
+
start_time = time.time()
|
| 75 |
+
try:
|
| 76 |
+
with torch.no_grad():
|
| 77 |
+
res = model.predict(
|
| 78 |
+
image, save=True, save_txt=True, exist_ok=True, conf=conf
|
| 79 |
+
)
|
| 80 |
+
boxes = res[0].boxes # first image
|
| 81 |
+
res_plotted = res[0].plot()[:, :, ::-1]
|
| 82 |
+
|
| 83 |
+
list_boxes = parse_xywh_and_class(boxes)
|
| 84 |
+
|
| 85 |
+
st.image(res_plotted, caption="Detected Image", use_column_width=True)
|
| 86 |
+
IMAGE_DOWNLOAD_PATH = f"runs/detect/predict/image0.jpg"
|
| 87 |
+
|
| 88 |
+
except Exception as ex:
|
| 89 |
+
st.write("Please upload image with types of JPG, JPEG, PNG ...")
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
try:
|
| 93 |
+
st.success(f"Done! Inference time: {time.time() - start_time:.2f} seconds")
|
| 94 |
+
st.subheader("Detected Braille Patterns")
|
| 95 |
+
for box_line in list_boxes:
|
| 96 |
+
str_left_to_right = ""
|
| 97 |
+
box_classes = box_line[:, -1]
|
| 98 |
+
for each_class in box_classes:
|
| 99 |
+
str_left_to_right += convert_to_braille_unicode(
|
| 100 |
+
model.names[int(each_class)]
|
| 101 |
+
)
|
| 102 |
+
st.write(str_left_to_right)
|
| 103 |
+
except Exception as ex:
|
| 104 |
+
st.write("Please try again with images with types of JPG, JPEG, PNG ...")
|
| 105 |
+
|
| 106 |
+
with open(IMAGE_DOWNLOAD_PATH, "rb") as fl:
|
| 107 |
+
st.download_button(
|
| 108 |
+
"Download object-detected image",
|
| 109 |
+
data=fl,
|
| 110 |
+
file_name="image0.jpg",
|
| 111 |
+
mime="image/jpg",
|
| 112 |
+
)
|
braille_map.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"000001": "⠠",
|
| 3 |
+
"000010": "⠐",
|
| 4 |
+
"000011": "⠰",
|
| 5 |
+
"000100": "⠈",
|
| 6 |
+
"000101": "⠨",
|
| 7 |
+
"000110": "⠘",
|
| 8 |
+
"000111": "⠸",
|
| 9 |
+
"001000": "⠄",
|
| 10 |
+
"001001": "⠤",
|
| 11 |
+
"001010": "⠔",
|
| 12 |
+
"001011": "⠴",
|
| 13 |
+
"001100": "⠌",
|
| 14 |
+
"001101": "⠬",
|
| 15 |
+
"001110": "⠜",
|
| 16 |
+
"001111": "⠼",
|
| 17 |
+
"010000": "⠂",
|
| 18 |
+
"010001": "⠢",
|
| 19 |
+
"010010": "⠒",
|
| 20 |
+
"010011": "⠲",
|
| 21 |
+
"010100": "⠊",
|
| 22 |
+
"010101": "⠪",
|
| 23 |
+
"010110": "⠚",
|
| 24 |
+
"010111": "⠺",
|
| 25 |
+
"011000": "⠆",
|
| 26 |
+
"011001": "⠦",
|
| 27 |
+
"011010": "⠖",
|
| 28 |
+
"011011": "⠶",
|
| 29 |
+
"011100": "⠎",
|
| 30 |
+
"011101": "⠮",
|
| 31 |
+
"011110": "⠞",
|
| 32 |
+
"011111": "⠾",
|
| 33 |
+
"100000": "⠁",
|
| 34 |
+
"100001": "⠡",
|
| 35 |
+
"100010": "⠑",
|
| 36 |
+
"100011": "⠱",
|
| 37 |
+
"100100": "⠉",
|
| 38 |
+
"100101": "⠩",
|
| 39 |
+
"100110": "⠙",
|
| 40 |
+
"100111": "⠹",
|
| 41 |
+
"101000": "⠅",
|
| 42 |
+
"101001": "⠥",
|
| 43 |
+
"101010": "⠕",
|
| 44 |
+
"101011": "⠵",
|
| 45 |
+
"101100": "⠍",
|
| 46 |
+
"101101": "⠭",
|
| 47 |
+
"101110": "⠝",
|
| 48 |
+
"101111": "⠽",
|
| 49 |
+
"110000": "⠃",
|
| 50 |
+
"110001": "⠣",
|
| 51 |
+
"110010": "⠓",
|
| 52 |
+
"110011": "⠳",
|
| 53 |
+
"110100": "⠋",
|
| 54 |
+
"110101": "⠫",
|
| 55 |
+
"110110": "⠛",
|
| 56 |
+
"110111": "⠻",
|
| 57 |
+
"111000": "⠇",
|
| 58 |
+
"111001": "⠧",
|
| 59 |
+
"111010": "⠗",
|
| 60 |
+
"111011": "⠷",
|
| 61 |
+
"111100": "⠏",
|
| 62 |
+
"111101": "⠯",
|
| 63 |
+
"111110": "⠟",
|
| 64 |
+
"111111": "⠿"
|
| 65 |
+
}
|
convert.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def convert_to_braille_unicode(str_input: str, path: str = "./src/utils/number_map.json") -> str:
|
| 7 |
+
with open(path, "r") as fl:
|
| 8 |
+
data = json.load(fl)
|
| 9 |
+
|
| 10 |
+
if str_input in data.keys():
|
| 11 |
+
str_output = data[str_input]
|
| 12 |
+
return str_output
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def parse_xywh_and_class(boxes: torch.Tensor) -> list:
|
| 16 |
+
"""
|
| 17 |
+
boxes input tensor
|
| 18 |
+
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes,
|
| 19 |
+
with shape (num_boxes, 6).
|
| 20 |
+
orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width).
|
| 21 |
+
Properties:
|
| 22 |
+
xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format.
|
| 23 |
+
conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes.
|
| 24 |
+
cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes.
|
| 25 |
+
xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format.
|
| 26 |
+
xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size.
|
| 27 |
+
xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size.
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
# copy values from troublesome "boxes" object to numpy array
|
| 31 |
+
new_boxes = np.zeros(boxes.shape)
|
| 32 |
+
new_boxes[:, :4] = boxes.xywh.cpu().numpy() # first 4 channels are xywh
|
| 33 |
+
new_boxes[:, 4] = boxes.conf.cpu().numpy() # 5th channel is confidence
|
| 34 |
+
new_boxes[:, 5] = boxes.cls.cpu().numpy() # 6th channel is class which is last channel
|
| 35 |
+
|
| 36 |
+
# sort according to y coordinate
|
| 37 |
+
new_boxes = new_boxes[new_boxes[:, 1].argsort()]
|
| 38 |
+
|
| 39 |
+
# find threshold index to break the line
|
| 40 |
+
y_threshold = np.mean(new_boxes[:, 3]) // 2
|
| 41 |
+
boxes_diff = np.diff(new_boxes[:, 1])
|
| 42 |
+
threshold_index = np.where(boxes_diff > y_threshold)[0]
|
| 43 |
+
|
| 44 |
+
# cluster according to threshold_index
|
| 45 |
+
boxes_clustered = np.split(new_boxes, threshold_index + 1)
|
| 46 |
+
boxes_return = []
|
| 47 |
+
for cluster in boxes_clustered:
|
| 48 |
+
# sort according to x coordinate
|
| 49 |
+
cluster = cluster[cluster[:, 0].argsort()]
|
| 50 |
+
boxes_return.append(cluster)
|
| 51 |
+
|
| 52 |
+
return boxes_return
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def arrange_braille_to_2x3(box_classes: list) -> list:
|
| 56 |
+
"""
|
| 57 |
+
将检测到的盲文字符类别数组转为 2x3 点阵格式。
|
| 58 |
+
:param box_classes: 检测到的盲文字符类别列表 (长度必须是6的倍数)
|
| 59 |
+
:return: 2x3 盲文点阵列表
|
| 60 |
+
"""
|
| 61 |
+
# 检查输入长度是否为6的倍数
|
| 62 |
+
if len(box_classes) % 6 != 0:
|
| 63 |
+
raise ValueError("输入的盲文字符数组长度必须是6的倍数")
|
| 64 |
+
|
| 65 |
+
braille_2x3_list = []
|
| 66 |
+
|
| 67 |
+
# 每次取6个字符并将它们排成2x3格式
|
| 68 |
+
for i in range(0, len(box_classes), 6):
|
| 69 |
+
# reshape为3x2矩阵然后转置为2x3矩阵
|
| 70 |
+
braille_char = np.array(box_classes[i:i + 6]).reshape(3, 2).T
|
| 71 |
+
braille_2x3_list.append(braille_char)
|
| 72 |
+
|
| 73 |
+
return braille_2x3_list
|
image/alpha-numeric.jpeg
ADDED
|
image/gray_image.jpg
ADDED
|
Git LFS Details
|
image/img_41.jpg
ADDED
|
image/test_1.jpg
ADDED
|
Git LFS Details
|
image/test_2.jpg
ADDED
|
Git LFS Details
|
image/test_3.jpg
ADDED
|
Git LFS Details
|
image/test_4.jpg
ADDED
|
Git LFS Details
|
image/test_5.jpg
ADDED
|
Git LFS Details
|
number_map.json
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"000001": "⠠",
|
| 3 |
+
"000010": "⠐",
|
| 4 |
+
"000011": "⠰",
|
| 5 |
+
"000100": "⠈",
|
| 6 |
+
"000101": "⠨",
|
| 7 |
+
"000110": "⠘",
|
| 8 |
+
"000111": "⠸",
|
| 9 |
+
"001000": "⠄",
|
| 10 |
+
"001001": "⠤",
|
| 11 |
+
"001010": "⠔",
|
| 12 |
+
"001011": "⠴",
|
| 13 |
+
"001100": "⠌",
|
| 14 |
+
"001101": "⠬",
|
| 15 |
+
"001110": "⠜",
|
| 16 |
+
"001111": "floor",
|
| 17 |
+
"010000": "⠂",
|
| 18 |
+
"010001": "⠢",
|
| 19 |
+
"010010": "⠒",
|
| 20 |
+
"010011": "⠲",
|
| 21 |
+
"010100": "9",
|
| 22 |
+
"010101": "⠪",
|
| 23 |
+
"010110": "0",
|
| 24 |
+
"010111": "⠺",
|
| 25 |
+
"011000": "⠆",
|
| 26 |
+
"011001": "⠦",
|
| 27 |
+
"011010": "⠖",
|
| 28 |
+
"011011": "⠶",
|
| 29 |
+
"011100": "⠎",
|
| 30 |
+
"011101": "⠮",
|
| 31 |
+
"011110": "⠞",
|
| 32 |
+
"011111": "⠾",
|
| 33 |
+
"100000": "1",
|
| 34 |
+
"100001": "⠡",
|
| 35 |
+
"100010": "5",
|
| 36 |
+
"100011": "⠱",
|
| 37 |
+
"100100": "3",
|
| 38 |
+
"100101": "⠩",
|
| 39 |
+
"100110": "4",
|
| 40 |
+
"100111": "⠹",
|
| 41 |
+
"101000": "⠅",
|
| 42 |
+
"101001": "⠥",
|
| 43 |
+
"101010": "⠕",
|
| 44 |
+
"101011": "⠵",
|
| 45 |
+
"101100": "⠍",
|
| 46 |
+
"101101": "⠭",
|
| 47 |
+
"101110": "⠝",
|
| 48 |
+
"101111": "⠽",
|
| 49 |
+
"110000": "2",
|
| 50 |
+
"110001": "⠣",
|
| 51 |
+
"110010": "8",
|
| 52 |
+
"110011": "⠳",
|
| 53 |
+
"110100": "6",
|
| 54 |
+
"110101": "⠫",
|
| 55 |
+
"110110": "7",
|
| 56 |
+
"110111": "⠻",
|
| 57 |
+
"111000": "⠇",
|
| 58 |
+
"111001": "⠧",
|
| 59 |
+
"111010": "⠗",
|
| 60 |
+
"111011": "⠷",
|
| 61 |
+
"111100": "⠏",
|
| 62 |
+
"111101": "⠯",
|
| 63 |
+
"111110": "⠟",
|
| 64 |
+
"111111": "⠿"
|
| 65 |
+
}
|
| 66 |
+
|