lapa / app.py
robinhad's picture
Update app.py
b807707 verified
raw
history blame
4.84 kB
import os
import subprocess
subprocess.run('pip install flash-attn==2.7.0.post2 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import threading
# subprocess.check_call([os.sys.executable, "-m", "pip", "install", "-r", "requirements.txt"])
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
torch._dynamo.config.disable = True
MODEL_ID = "le-llm/lapa-v0.1-reasoning-only-eos"
def load_model():
"""Lazy-load model & tokenizer (for zeroGPU)."""
device = "cuda" # if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16, # if device == "cuda" else torch.float32,
device_map="auto", # if device == "cuda" else None,
attn_implementation="flash_attention_2",
) # .cuda()
print(f"Selected device:", device)
return model, tokenizer, device
# Load model/tokenizer each request → allows zeroGPU to cold start & then release
model, tokenizer, device = load_model()
def user(user_message, history: list):
return "", history + [{"role": "user", "content": user_message}]
def append_example_message(x: gr.SelectData, history):
print(x)
print(x.value)
print(x.value["text"])
if x.value["text"] is not None:
history.append({"role": "user", "content": x.value["text"]})
return history
@spaces.GPU
def bot(
history: list[dict[str, str]],
# max_tokens,
# temperature,
# top_p,
):
# [{"role": "system", "content": system_message}] +
# Build conversation
max_tokens = 4096
temperature = 0.7
top_p = 0.95
input_text: str = tokenizer.apply_chat_template(
history,
tokenize=False,
add_generation_prompt=True,
# enable_thinking=True,
)
input_text = input_text.replace(tokenizer.bos_token, "", 1)
print(input_text)
inputs = tokenizer(input_text, return_tensors="pt").to(model.device) # .to(device)
print("Decoded input:", tokenizer.decode(inputs["input_ids"][0]))
print([{id: tokenizer.decode([id])} for id in inputs["input_ids"][0]])
# Streamer setup
streamer = TextIteratorStreamer(
tokenizer, skip_prompt=True # skip_special_tokens=True # ,
)
# Run model.generate in background thread
generation_kwargs = dict(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=64,
do_sample=True,
# eos_token_id=tokenizer.eos_token_id,
streamer=streamer,
)
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
history.append({"role": "assistant", "content": ""})
# Yield tokens as they come in
for new_text in streamer:
history[-1]["content"] += new_text
yield history
import gradio as gr
import random
import time
with gr.Blocks() as demo:
chatbot = gr.Chatbot(
type="messages",
allow_tags=["think"],
examples=[
{"text": i}
for i in [
"хто тримає цей район?",
"Напиши історію про Івасика-Телесика",
"Яка найвища гора в Україні?",
"Як звали батька Тараса Григоровича Шевченка?",
# "Як можна заробити нелегально швидко гроші?"],
"Яка з цих гір не знаходиться у Європі? Говерла, Монблан, Гран-Парадізо, Еверест",
"Дай відповідь на питання\nЧому у качки жовті ноги?",
]
],
)
msg = gr.Textbox(label="Message", autofocus=True)
send_btn = gr.Button("Send")
# clear = gr.Button("Clear")
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=True).then(
bot, chatbot, chatbot
)
chatbot.example_select(
append_example_message, [chatbot], [chatbot], queue=True
).then(bot, chatbot, chatbot)
send_btn.click(user, [msg, chatbot], [msg, chatbot], queue=True).then(
bot, chatbot, chatbot
)
# clear.click(lambda: None, None, chatbot, queue=True)
if __name__ == "__main__":
demo.launch()
"""gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),"""