Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,955 Bytes
130e53d a9065c7 e0ce993 2536b39 e0ce993 f52933f 130e53d 0e29f16 c5d24cb c6ac4a0 c5d24cb a9065c7 27ebbf9 ef7ad3a e892bca d03d3f9 7719ac7 130e53d e6380a7 919bf29 381e299 ddef6b7 3b045dd b7b5970 ab2add0 27ebbf9 3da0193 27ebbf9 d5dc5cf a9065c7 5725e7b ddef6b7 a9065c7 ddef6b7 a9065c7 d5dc5cf 0ad02a2 5725e7b 27ebbf9 5725e7b 0e29f16 a9065c7 d5dc5cf 5725e7b 0e29f16 a9065c7 14729c6 a113c8a a9065c7 a113c8a a9065c7 d5dc5cf a9065c7 9203469 14729c6 a113c8a 14729c6 a113c8a 14729c6 a113c8a a50233e a113c8a a9065c7 5725e7b a113c8a a9065c7 a113c8a a9065c7 a113c8a a9065c7 14729c6 0154070 14729c6 c6ac4a0 5725e7b a9065c7 4363542 a113c8a 5725e7b 4363542 e6d0602 a113c8a e6d0602 a113c8a 14729c6 a113c8a a9065c7 a113c8a 0154070 a113c8a 14729c6 0154070 a113c8a a9065c7 edb7715 a9065c7 a113c8a a9065c7 a113c8a a9065c7 f52933f a113c8a f52933f a9065c7 919bf29 4363542 5725e7b 919bf29 f52933f 919bf29 f52933f 5725e7b f52933f 5725e7b 14729c6 5725e7b 27ebbf9 a9065c7 27ebbf9 4363542 756e900 5725e7b 756e900 a9065c7 756e900 27ebbf9 756e900 5725e7b 4363542 756e900 e676b08 756e900 a9065c7 756e900 2536b39 756e900 a9065c7 756e900 a9065c7 756e900 a9065c7 756e900 5725e7b 756e900 5725e7b 756e900 a9065c7 756e900 5725e7b 756e900 5725e7b 756e900 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
import os
import subprocess
import tempfile
# subprocess.run('pip install flash-attn==2.8.0 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import threading
# subprocess.check_call([os.sys.executable, "-m", "pip", "install", "-r", "requirements.txt"])
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoProcessor, AutoTokenizer, TextIteratorStreamer
from analytics import AnalyticsLogger
from kernels import get_kernel
from typing import Any, Optional, Dict
from PIL import Image
import base64
import io
#vllm_flash_attn3 = get_kernel("kernels-community/vllm-flash-attn3")
#torch._dynamo.config.disable = True
HF_LE_LLM_READ_TOKEN = os.environ.get('HF_LE_LLM_READ_TOKEN')
from huggingface_hub import login
login(token=HF_LE_LLM_READ_TOKEN)
#MODEL_ID = "le-llm/lapa-v0.1-reasoning-only-32768"
MODEL_ID = "le-llm/lapa-v0.1-instruct"
MODEL_ID = "le-llm/lapa-v0.1-matt-instruction-5e06"
MODEL_ID = "le-llm/lapa-v0.1-reprojected"
logger = AnalyticsLogger()
def _begin_analytics_session():
# Called once per client on app load
_ = logger.start_session(MODEL_ID)
def load_model():
"""Lazy-load model, tokenizer, and optional processor (for zeroGPU)."""
device = "cuda" # if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
processor = None
try:
processor = AutoProcessor.from_pretrained(MODEL_ID)
except Exception as err: # pragma: no cover - informative fallback
print(f"Warning: AutoProcessor not available ({err}). Falling back to tokenizer.")
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
dtype=torch.bfloat16, # if device == "cuda" else torch.float32,
device_map="auto", # if device == "cuda" else None,
attn_implementation="flash_attention_2",# "kernels-community/vllm-flash-attn3", # #
) # .cuda()
print(f"Selected device:", device)
return model, tokenizer, processor, device
# Load model/tokenizer each request → allows zeroGPU to cold start & then release
model, tokenizer, processor, device = load_model()
def user(user_message, image_data, history: list):
"""Format user message with optional image."""
import base64
import io
from PIL import Image
user_message = user_message or ""
updated_history = list(history)
has_content = False
stripped_message = user_message.strip()
# If we have an image, save it to temp file for Gradio display and also encode as base64 for model
if image_data is not None:
# Save to temp file for Gradio display
fd, tmp_path = tempfile.mkstemp(suffix=".jpg")
os.close(fd)
image_data.save(tmp_path, format="JPEG")
# Also encode as base64 for model processing (stored in metadata)
buffered = io.BytesIO()
image_data.save(buffered, format="JPEG")
img_base64 = base64.b64encode(buffered.getvalue()).decode()
text_content = stripped_message if stripped_message else "Describe this image"
# Store both text and image in a single message with base64 in metadata
updated_history.append({
"role": "user",
"content": text_content
})
updated_history.append({
"role": "user",
"content": {
"path": tmp_path,
"alt_text": "User uploaded image"
},
})
has_content = True
elif stripped_message:
updated_history.append({"role": "user", "content": stripped_message})
has_content = True
if not has_content:
# Nothing to submit yet; keep inputs unchanged
return user_message, image_data, history
return "", None, updated_history
def append_example_message(x: gr.SelectData, history):
print(x)
print(x.value)
print(x.value["text"])
if x.value["text"] is not None:
history.append({"role": "user", "content": x.value["text"]})
return history
def _extract_text_from_content(content: Any) -> str:
"""Extract text from message content for logging."""
if isinstance(content, str):
return content
if isinstance(content, list):
text_parts = []
for item in content:
if isinstance(item, dict) and item.get("type") == "text":
text_parts.append(item.get("text", ""))
return " ".join(text_parts) if text_parts else "[Image]"
return str(content)
def _clean_history_for_display(history: list[dict[str, Any]]) -> list[dict[str, Any]]:
"""Remove internal metadata fields like _base64 before displaying in Gradio."""
cleaned = []
for message in history:
cleaned_message = {"role": message.get("role", "user")}
content = message.get("content")
if isinstance(content, str):
cleaned_message["content"] = content
elif isinstance(content, list):
cleaned_content = []
for item in content:
if isinstance(item, dict):
# Remove _base64 metadata
cleaned_item = {k: v for k, v in item.items() if not k.startswith("_")}
cleaned_content.append(cleaned_item)
else:
cleaned_content.append(item)
cleaned_message["content"] = cleaned_content
else:
cleaned_message["content"] = content
cleaned.append(cleaned_message)
return cleaned
def format_message_with_image(
text: str, role: str, image: Optional[Image.Image] = None
) -> Dict[str, Any]:
"""Format message for VLLM API with optional image."""
if image is not None:
# Convert PIL image to base64
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
img_base64 = base64.b64encode(buffered.getvalue()).decode()
return {
"role": role,
"content": [
{"type": "text", "text": text},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{img_base64}"},
},
],
}
else:
return {"role": role, "content": text}
@spaces.GPU
def bot(
history: list[dict[str, Any]]
):
"""Generate bot response with support for text and images."""
max_tokens = 4096
temperature = 0.7
top_p = 0.95
# Early return if no input
if not history:
return
# Extract last user message for logging
last_user_msg = next((msg for msg in reversed(history) if msg.get("role") == "user"), None)
user_message_text = _extract_text_from_content(last_user_msg.get("content")) if last_user_msg else ""
print('User message:', user_message_text)
# Check if any message contains images
has_images = any(
isinstance(msg.get("content"), list) and
any(item.get("type") == "image" for item in msg.get("content") if isinstance(item, dict))
for msg in history
)
model_inputs = None
# Use processor if images are present
if processor is not None and has_images:
try:
processor_history = []
for msg in history:
role = msg.get("role", "user")
content = msg.get("content")
if isinstance(content, str):
processor_history.append({"role": role, "content": content})
elif isinstance(content, list):
formatted_content = []
for item in content:
if isinstance(item, dict):
# Add text
if item.get("type") == "text":
formatted_content.append({"type": "text", "text": item.get("text", "")})
elif item.get("type") == "image":
# Use _base64 metadata if available, otherwise load from path
pil_image = None
if "_base64" in item:
img_url = item["_base64"]
if img_url.startswith("data:image"):
base64_data = img_url.split(",")[1]
img_data = base64.b64decode(base64_data)
pil_image = Image.open(io.BytesIO(img_data))
elif "path" in item:
pil_image = Image.open(item["path"])
if pil_image is not None:
# formatted_content.append({"type": "image", "image": pil_image})
buffered = io.BytesIO()
pil_image.save(buffered, format="JPEG")
img_base64 = base64.b64encode(buffered.getvalue()).decode()
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{img_base64}"},
}
if formatted_content:
processor_history.append({"role": role, "content": formatted_content})
model_inputs = processor(
messages=processor_history,
return_tensors="pt",
add_generation_prompt=True,
).to(model.device)
print("Using processor for vision input")
except Exception as exc:
print(f"Processor failed: {exc}")
model_inputs = None
# Fallback to tokenizer for text-only
if model_inputs is None:
# Convert to text-only format for tokenizer
text_history = []
for msg in history:
role = msg.get("role", "user")
content = msg.get("content")
text_content = _extract_text_from_content(content)
if text_content:
text_history.append({"role": role, "content": text_content})
if text_history:
input_text = tokenizer.apply_chat_template(
text_history,
tokenize=False,
add_generation_prompt=True,
)
if input_text and tokenizer.bos_token:
input_text = input_text.replace(tokenizer.bos_token, "", 1)
model_inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
print("Using tokenizer for text-only input")
if model_inputs is None:
return
# Streamer setup
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
# Run model.generate in background thread
generation_kwargs = dict(
**model_inputs,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=64,
do_sample=True,
streamer=streamer,
)
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
history.append({"role": "assistant", "content": ""})
# Yield tokens as they come in
for new_text in streamer:
history[-1]["content"] += new_text
yield _clean_history_for_display(history)
assistant_message = history[-1]["content"]
logger.log_interaction(user=user_message_text, answer=assistant_message)
# --- drop-in UI compatible with older Gradio versions ---
import os, tempfile, time
import gradio as gr
# Ukrainian-inspired theme with deep, muted colors reflecting unbeatable spirit:
THEME = gr.themes.Soft(
primary_hue="blue", # Deep blue representing Ukrainian sky and resolve
secondary_hue="amber", # Warm amber representing golden fields and determination
neutral_hue="stone", # Earthy stone representing strength and foundation
)
# Load CSS from external file
def load_css():
try:
with open("static/style.css", "r", encoding="utf-8") as f:
return f.read()
except FileNotFoundError:
print("Warning: static/style.css not found")
return ""
CSS = load_css()
def _clear_chat():
return "", None, []
with gr.Blocks(theme=THEME, css=CSS, fill_height=True) as demo:
demo.load(fn=_begin_analytics_session, inputs=None, outputs=None)
# Header (no gr.Box to avoid version issues)
gr.HTML(
"""
<div id="app-header">
<div class="app-title">✨ LAPA</div>
<div class="app-subtitle">LLM for Ukrainian Language</div>
</div>
"""
)
with gr.Row(equal_height=True):
# Left side: Chat
with gr.Column(scale=7, elem_id="left-pane"):
with gr.Column(elem_id="chat-card"):
chatbot = gr.Chatbot(
type="messages",
height=560,
render_markdown=True,
show_copy_button=True,
show_label=False,
# likeable=True,
allow_tags=["think"],
elem_id="chatbot",
examples=[
{"text": i}
for i in [
"хто тримає цей район?",
"Напиши історію про Івасика-Телесика",
"Яка найвища гора в Україні?",
"Як звали батька Тараса Григоровича Шевченка?",
"Яка з цих гір не знаходиться у Європі? Говерла, Монблан, Гран-Парадізо, Еверест",
"Дай відповідь на питання\nЧому у качки жовті ноги?",
]
],
)
image_input = gr.Image(
label="Attach image (optional)",
type="pil",
sources=["upload", "clipboard"],
height=200,
interactive=True,
elem_id="image-input",
)
# ChatGPT-style input box with stop button
with gr.Row(elem_id="chat-input-row"):
msg = gr.Textbox(
label=None,
placeholder="Message… (Press Enter to send)",
autofocus=True,
lines=1,
max_lines=6,
container=False,
show_label=False,
elem_id="chat-input",
elem_classes=["chat-input-box"]
)
stop_btn_visible = gr.Button(
"⏹️",
variant="secondary",
elem_id="stop-btn-visible",
elem_classes=["stop-btn-chat"],
visible=False,
size="sm"
)
# Hidden buttons for functionality
with gr.Row(visible=True, elem_id="hidden-buttons"):
send_btn = gr.Button("Send", variant="primary", elem_id="send-btn")
stop_btn = gr.Button("Stop", variant="secondary", elem_id="stop-btn")
clear_btn = gr.Button("Clear", variant="secondary", elem_id="clear-btn")
# export_btn = gr.Button("Export chat (.md)", variant="secondary", elem_classes=["rounded-btn","secondary-btn"])
# exported_file = gr.File(label="", interactive=False, visible=True)
gr.HTML('<div class="footer-tip">Shortcuts: Enter to send • Shift+Enter for new line</div>')
# Helper functions for managing UI state
def show_stop_button():
return gr.update(visible=True)
def hide_stop_button():
return gr.update(visible=False)
# Events (preserve your original handlers)
e1 = msg.submit(fn=user, inputs=[msg, image_input, chatbot], outputs=[msg, image_input, chatbot], queue=True).then(
fn=show_stop_button, inputs=None, outputs=stop_btn_visible
).then(
fn=bot, inputs=chatbot, outputs=chatbot
).then(
fn=hide_stop_button, inputs=None, outputs=stop_btn_visible
)
e2 = send_btn.click(fn=user, inputs=[msg, image_input, chatbot], outputs=[msg, image_input, chatbot], queue=True).then(
fn=show_stop_button, inputs=None, outputs=stop_btn_visible
).then(
fn=bot, inputs=chatbot, outputs=chatbot
).then(
fn=hide_stop_button, inputs=None, outputs=stop_btn_visible
)
e3 = chatbot.example_select(fn=append_example_message, inputs=[chatbot], outputs=[chatbot], queue=True).then(
fn=show_stop_button, inputs=None, outputs=stop_btn_visible
).then(
fn=bot, inputs=chatbot, outputs=chatbot
).then(
fn=hide_stop_button, inputs=None, outputs=stop_btn_visible
)
# Stop cancels running events (both buttons work)
stop_btn.click(fn=hide_stop_button, inputs=None, outputs=stop_btn_visible, cancels=[e1, e2, e3], queue=True)
stop_btn_visible.click(fn=hide_stop_button, inputs=None, outputs=stop_btn_visible, cancels=[e1, e2, e3], queue=True)
# Clear chat + input
clear_btn.click(fn=_clear_chat, inputs=None, outputs=[msg, image_input, chatbot])
# Export markdown
# export_btn.click(fn=_export_markdown, inputs=chatbot, outputs=exported_file)
# Load and inject external JavaScript
def load_javascript():
try:
with open("static/script.js", "r", encoding="utf-8") as f:
return f"<script>{f.read()}</script>"
except FileNotFoundError:
print("Warning: static/script.js not found")
return ""
gr.HTML(load_javascript())
if __name__ == "__main__":
demo.queue().launch()
|