File size: 23,825 Bytes
130e53d
 
a9065c7
e0ce993
2536b39
e0ce993
f52933f
130e53d
0e29f16
c5d24cb
c6ac4a0
c5d24cb
 
6579266
a9065c7
27ebbf9
ef7ad3a
e892bca
 
7719ac7
130e53d
e6380a7
919bf29
1699c04
381e299
 
ddef6b7
 
 
1699c04
a3debde
ab2add0
1699c04
 
 
 
6579266
 
27ebbf9
3da0193
27ebbf9
 
 
d5dc5cf
 
a9065c7
5725e7b
ddef6b7
a9065c7
 
ddef6b7
a9065c7
 
 
d5dc5cf
 
0ad02a2
5725e7b
27ebbf9
5725e7b
0e29f16
a9065c7
d5dc5cf
5725e7b
0e29f16
a9065c7
 
 
6579266
14729c6
a113c8a
a9065c7
a113c8a
a9065c7
 
d5dc5cf
a9065c7
9203469
1699c04
a113c8a
6579266
 
14729c6
 
 
 
 
 
a113c8a
 
 
1699c04
 
a113c8a
14729c6
a113c8a
 
a50233e
 
 
 
 
 
 
a113c8a
 
 
 
 
a9065c7
 
 
 
 
 
 
5725e7b
 
 
 
 
 
 
 
 
6579266
a113c8a
 
 
6579266
 
 
 
a9065c7
 
14729c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6ac4a0
5725e7b
a9065c7
4363542
a113c8a
4363542
e6d0602
a113c8a
e6d0602
 
a113c8a
 
 
 
 
 
 
86d8343
a113c8a
 
 
 
 
 
 
20ae630
 
 
 
 
9501e58
20ae630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a113c8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9065c7
 
a113c8a
a9065c7
f52933f
a113c8a
f52933f
 
 
a9065c7
1699c04
 
 
5725e7b
919bf29
f52933f
919bf29
f52933f
 
 
5725e7b
f52933f
 
5725e7b
14729c6
5725e7b
27ebbf9
cd96d37
27ebbf9
4363542
756e900
 
5725e7b
756e900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9065c7
756e900
3d44d93
27ebbf9
 
 
756e900
 
 
 
 
 
 
 
5725e7b
4363542
756e900
 
 
 
 
 
 
 
 
 
 
 
e676b08
756e900
 
 
 
 
 
 
 
 
 
 
 
 
a9065c7
 
 
 
 
 
 
 
 
756e900
 
 
 
 
 
 
 
 
 
 
 
 
f290234
 
 
 
 
 
 
756e900
 
 
 
 
 
 
 
 
 
2536b39
756e900
 
 
 
 
 
 
 
 
f290234
 
756e900
f290234
 
756e900
 
a9065c7
f290234
756e900
 
 
f290234
756e900
a9065c7
f290234
 
756e900
 
 
f290234
756e900
a9065c7
756e900
f290234
756e900
 
 
f290234
5725e7b
 
756e900
f290234
 
5725e7b
756e900
a9065c7
756e900
 
 
5725e7b
6737d1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
756e900
 
 
 
 
 
 
 
 
 
5725e7b
 
756e900
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
import os
import subprocess
import tempfile

# subprocess.run('pip install flash-attn==2.8.0 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

import threading

# subprocess.check_call([os.sys.executable, "-m", "pip", "install", "-r", "requirements.txt"])

import spaces
import gradio as gr
import torch
from PIL.Image import Image
from transformers import AutoModelForCausalLM, AutoProcessor, AutoTokenizer, TextIteratorStreamer
from analytics import AnalyticsLogger
from kernels import get_kernel
from typing import Any, Optional, Dict

#vllm_flash_attn3 = get_kernel("kernels-community/vllm-flash-attn3")

#torch._dynamo.config.disable = True

# Login to HF to get access to the model weights
HF_LE_LLM_READ_TOKEN = os.environ.get('HF_LE_LLM_READ_TOKEN')

from huggingface_hub import login
login(token=HF_LE_LLM_READ_TOKEN)

# Constants
MODEL_ID = "lapa-llm/lapa-v0.1.2-instruct"

MAX_TOKENS = 4096
TEMPERATURE = 0.7
TOP_P = 0.95

IMAGE_MAX_SIZE = 1024

logger = AnalyticsLogger()

def _begin_analytics_session():
    # Called once per client on app load
    _ = logger.start_session(MODEL_ID)

def load_model():
    """Lazy-load model, tokenizer, and optional processor (for zeroGPU)."""
    device = "cuda"  # if torch.cuda.is_available() else "cpu"
    tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
    processor = None
    try:
        processor = AutoProcessor.from_pretrained(MODEL_ID)
    except Exception as err:  # pragma: no cover - informative fallback
        print(f"Warning: AutoProcessor not available ({err}). Falling back to tokenizer.")

    model = AutoModelForCausalLM.from_pretrained(
        MODEL_ID,
        dtype=torch.bfloat16,  # if device == "cuda" else torch.float32,
        device_map="auto",  # if device == "cuda" else None,
        attn_implementation="flash_attention_2",# "kernels-community/vllm-flash-attn3", #  #
    )  # .cuda()
    print(f"Selected device:", device)
    return model, tokenizer, processor, device


# Load model/tokenizer each request → allows zeroGPU to cold start & then release
model, tokenizer, processor, device = load_model()


def user(user_message, image_data: Image, history: list):
    """Format user message with optional image."""
    import io

    user_message = user_message or ""
    updated_history = list(history)
    has_content = False

    stripped_message = user_message.strip()

    # If we have an image, save it to temp file for Gradio display
    if image_data is not None:
        image_data.thumbnail((IMAGE_MAX_SIZE, IMAGE_MAX_SIZE))

        # Save to temp file for Gradio display
        fd, tmp_path = tempfile.mkstemp(suffix=".jpg")
        os.close(fd)
        image_data.save(tmp_path, format="JPEG")

        # Also encode as base64 for model processing (stored in metadata)
        buffered = io.BytesIO()
        image_data.save(buffered, format="JPEG")

        # TODO do we leave that message?
        text_content = stripped_message if stripped_message else "Опиши це зображення"

        # Store both text and image in a single message with base64 in metadata
        updated_history.append({
            "role": "user",
            "content": text_content
        })
        updated_history.append({
            "role": "user",
            "content": {
                    "path": tmp_path,
                    "alt_text": "User uploaded image"
                },
        })
        has_content = True
    elif stripped_message:
        updated_history.append({"role": "user", "content": stripped_message})
        has_content = True

    if not has_content:
        # Nothing to submit yet; keep inputs unchanged
        return user_message, image_data, history

    return "", None, updated_history


def append_example_message(x: gr.SelectData, history):
    if x.value["text"] is not None:
        history.append({"role": "user", "content": x.value["text"]})

    return history


def _extract_text_from_content(content: Any) -> str | tuple[str, str]:
    """Extract text from message content for logging."""
    if isinstance(content, str):
        return content
    if isinstance(content, tuple) and len(content) == 2:
        return content # (image_path, user_text)

    raise ValueError(f"Unsupported content type for text extraction: {content}")


def _clean_history_for_display(history: list[dict[str, Any]]) -> list[dict[str, Any]]:
    """Remove internal metadata fields like _base64 before displaying in Gradio."""
    cleaned = []
    for message in history:
        cleaned_message = {"role": message.get("role", "user")}
        content = message.get("content")

        if isinstance(content, str):
            cleaned_message["content"] = content
        elif isinstance(content, list):
            cleaned_content = []
            for item in content:
                if isinstance(item, dict):
                    # Remove _base64 metadata
                    cleaned_item = {k: v for k, v in item.items() if not k.startswith("_")}
                    cleaned_content.append(cleaned_item)
                else:
                    cleaned_content.append(item)
            cleaned_message["content"] = cleaned_content
        else:
            cleaned_message["content"] = content

        cleaned.append(cleaned_message)

    return cleaned


@spaces.GPU
def bot(
    history: list[dict[str, Any]]
):
    """Generate bot response with support for text and images."""

    # Early return if no input
    if not history:
        return

    # Extract last user message for logging
    last_user_msg = next((msg for msg in reversed(history) if msg.get("role") == "user"), None)
    user_message_text = _extract_text_from_content(last_user_msg.get("content")) if last_user_msg else ""
    print('User message:', user_message_text)

    # Check if any message contains images
    has_images = any(
        isinstance(msg.get("content"), tuple)
        for msg in history
    )

    model_inputs = None

    # Use processor if images are present
    if processor is not None and has_images:
        # try:
        processor_history = []
        for msg in history:
            role = msg.get("role", "user")
            content = msg.get("content")

            if isinstance(content, str):
                processor_history.append({"role": role, "content": [{"type": "text", "text": content}]})
            elif isinstance(content, tuple):
                formatted_content = []
                tmp_path, _ = content 
                image_input = {
                    "type": "image",
                    "url": f"{tmp_path}",
                }

                if processor_history[-1].get('role') == 'user':
                    if isinstance(processor_history[-1].get('content'), str):
                        previous_message = processor_history[-1].get('content')
                        formatted_content.append({"type": "text", "text": previous_message})
                        formatted_content.append(image_input)
                        processor_history[-1]['content'] = formatted_content
                    elif isinstance(processor_history[-1].get('content'), list):
                        processor_history[-1]['content'].append(image_input)
                else:
                    formatted_content.append(image_input)
                    processor_history.append({"role": role, "content": formatted_content})

        print(f"{processor_history = }")

        model_inputs = processor.apply_chat_template(
            processor_history,
            tokenize=True,
            return_dict=True,
            return_tensors="pt",
            add_generation_prompt=True,
        ).to(model.device)
        print("Using processor for vision input")
        # except Exception as exc:
        #     print(f"Processor failed: {exc}")
        #     model_inputs = None

    # Fallback to tokenizer for text-only
    if model_inputs is None:
        # Convert to text-only format for tokenizer
        text_history = []
        for msg in history:
            role = msg.get("role", "user")
            content = msg.get("content")
            text_content = _extract_text_from_content(content)
            if text_content:
                text_history.append({"role": role, "content": text_content})

        if text_history:
            input_text = tokenizer.apply_chat_template(
                text_history,
                tokenize=False,
                add_generation_prompt=True,
            )
            if input_text and tokenizer.bos_token:
                input_text = input_text.replace(tokenizer.bos_token, "", 1)
            model_inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
            print("Using tokenizer for text-only input")

    if model_inputs is None:
        return

    # Streamer setup
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)

    # Run model.generate in background thread
    generation_kwargs = dict(
        **model_inputs,
        max_new_tokens=MAX_TOKENS,
        temperature=TEMPERATURE,
        top_p=TOP_P,
        top_k=64,
        do_sample=True,
        streamer=streamer,
    )
    thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    history.append({"role": "assistant", "content": ""})
    # Yield tokens as they come in
    for new_text in streamer:
        history[-1]["content"] += new_text
        yield _clean_history_for_display(history)

    assistant_message = history[-1]["content"]
    logger.log_interaction(user=user_message_text, answer=assistant_message)


# --- drop-in UI compatible with older Gradio versions ---
import os, tempfile, time
import gradio as gr

# Ukrainian-inspired theme with deep, muted colors reflecting unbeatable spirit:
THEME = gr.themes.Soft(
    primary_hue="blue",      # Deep blue representing Ukrainian sky and resolve
    secondary_hue="amber",   # Warm amber representing golden fields and determination  
    neutral_hue="stone",     # Earthy stone representing strength and foundation
)

# Load CSS from external file
def load_css():
    try:
        with open("static/style.css", "r", encoding="utf-8") as f:
            return f.read()
    except FileNotFoundError:
        print("Warning: static/style.css not found")
        return ""

CSS = load_css()

def _clear_chat():
    return "", None, []

with gr.Blocks(theme=THEME, css=CSS, fill_height=True, js="() => {document.body.classList.remove('dark');}") as demo:
    demo.load(fn=_begin_analytics_session, inputs=None, outputs=None)


    # Header (no gr.Box to avoid version issues)
    gr.HTML(
        """
        <div id="app-header">
          <div class="app-title">✨ LAPA</div>
          <div class="app-subtitle">LLM for Ukrainian Language</div>
        </div>
        """
    )

    with gr.Row(equal_height=True):
        # Left side: Chat
        with gr.Column(scale=7, elem_id="left-pane"):
            with gr.Column(elem_id="chat-card"):
                chatbot = gr.Chatbot(
                    type="messages",
                    height=560,
                    render_markdown=True,
                    show_copy_button=True,
                    show_label=False,
                    # likeable=True,
                    allow_tags=["think"],
                    elem_id="chatbot",
                    examples=[
                        {"text": i}
                        for i in [
                            "хто тримає цей район?",
                            "Напиши історію про Івасика-Телесика",
                            "Яка найвища гора в Україні?",
                            "Як звали батька Тараса Григоровича Шевченка?",
                            "Яка з цих гір не знаходиться у Європі? Говерла, Монблан, Гран-Парадізо, Еверест",
                            "Дай відповідь на питання\nЧому у качки жовті ноги?",
                        ]
                    ],
                )

            image_input = gr.Image(
                label="Attach image (optional)",
                type="pil",
                sources=["upload", "clipboard"],
                height=200,
                interactive=True,
                elem_id="image-input",
            )

            # ChatGPT-style input box with stop button
            with gr.Row(elem_id="chat-input-row"):
                msg = gr.Textbox(
                    label=None,
                    placeholder="Message… (Press Enter to send)",
                    autofocus=True,
                    lines=1,
                    max_lines=6,
                    container=False,
                    show_label=False,
                    elem_id="chat-input",
                    elem_classes=["chat-input-box"]
                )
                send_btn_visible = gr.Button(
                    "➤",
                    variant="primary",
                    elem_id="send-btn-visible",
                    elem_classes=["send-btn-chat"],
                    size="sm"
                )
                stop_btn_visible = gr.Button(
                    "⏹️", 
                    variant="secondary", 
                    elem_id="stop-btn-visible",
                    elem_classes=["stop-btn-chat"],
                    visible=False,
                    size="sm"
                )
            
            # Hidden buttons for functionality
            with gr.Row(visible=True, elem_id="hidden-buttons"):
                send_btn = gr.Button("Send", variant="primary", elem_id="send-btn")
                stop_btn = gr.Button("Stop", variant="secondary", elem_id="stop-btn")
                clear_btn = gr.Button("Clear", variant="secondary", elem_id="clear-btn")

            # export_btn = gr.Button("Export chat (.md)", variant="secondary", elem_classes=["rounded-btn","secondary-btn"])
            # exported_file = gr.File(label="", interactive=False, visible=True)
            gr.HTML('<div class="footer-tip">Shortcuts: Enter to send • Shift+Enter for new line</div>')

    # Helper functions for managing UI state
    def show_stop_hide_send():
        return gr.update(visible=True), gr.update(visible=False)
    
    def hide_stop_show_send():
        return gr.update(visible=False), gr.update(visible=True)

    # Events (preserve your original handlers)
    e1 = msg.submit(fn=user, inputs=[msg, image_input, chatbot], outputs=[msg, image_input, chatbot], queue=True).then(
        fn=show_stop_hide_send, inputs=None, outputs=[stop_btn_visible, send_btn_visible]
    ).then(
        fn=bot, inputs=chatbot, outputs=chatbot
    ).then(
        fn=hide_stop_show_send, inputs=None, outputs=[stop_btn_visible, send_btn_visible]
    )

    e2 = send_btn_visible.click(fn=user, inputs=[msg, image_input, chatbot], outputs=[msg, image_input, chatbot], queue=True).then(
        fn=show_stop_hide_send, inputs=None, outputs=[stop_btn_visible, send_btn_visible]
    ).then(
        fn=bot, inputs=chatbot, outputs=chatbot
    ).then(
        fn=hide_stop_show_send, inputs=None, outputs=[stop_btn_visible, send_btn_visible]
    )

    e3 = chatbot.example_select(fn=append_example_message, inputs=[chatbot], outputs=[chatbot], queue=True).then(
        fn=show_stop_hide_send, inputs=None, outputs=[stop_btn_visible, send_btn_visible]
    ).then(
        fn=bot, inputs=chatbot, outputs=chatbot
    ).then(
        fn=hide_stop_show_send, inputs=None, outputs=[stop_btn_visible, send_btn_visible]
    )

    # Stop cancels running events (both buttons work)
    stop_btn.click(fn=hide_stop_show_send, inputs=None, outputs=[stop_btn_visible, send_btn_visible], cancels=[e1, e2, e3], queue=True)
    stop_btn_visible.click(fn=hide_stop_show_send, inputs=None, outputs=[stop_btn_visible, send_btn_visible], cancels=[e1, e2, e3], queue=True)

    # Clear chat + input
    clear_btn.click(fn=_clear_chat, inputs=None, outputs=[msg, image_input, chatbot])

    # Export markdown
    # export_btn.click(fn=_export_markdown, inputs=chatbot, outputs=exported_file)

    gr.HTML(
        """<h1>Lapa LLM</h1>
        
        <h2>Introducing Lapa LLM v0.1.2 — the most efficient Ukrainian open-source language model</h2>
        
        <div class="links-section">
            <h2>Links:</h2>
            <a href="https://huggingface.co/collections/lapa-llm/lapa-v012-release" target="_blank">Release Collection: model checkpoints, datasets, demo pages</a><br>
            <a href="https://github.com/lapa-llm/lapa-llm" target="_blank">Code on GitHub</a><br>
            <a href="https://t.me/pehade_blog" target="_blank">Subscribe to the Telegram channel for further updates</a><br>
        </div>
        <br>
        <p>Today, we proudly present Lapa LLM — a cutting-edge open large language model based on Gemma-3-12B with a focus on Ukrainian language processing. The project is the result of many months of work by a team of Ukrainian researchers in artificial intelligence from the Ukrainian Catholic University, AGH University of Krakow, Igor Sikorsky Kyiv Polytechnic Institute, and Lviv Polytechnic, who united to create the best model for Ukrainian language processing.</p>
        
        <p>The model is named in honor of <a href="https://de.wikipedia.org/wiki/Walentyn_Lapa" target="_blank">Valentyn Lapa</a>, who together with <a href="https://uk.wikipedia.org/wiki/%D0%86%D0%B2%D0%B0%D1%85%D0%BD%D0%B5%D0%BD%D0%BA%D0%BE_%D0%9E%D0%BB%D0%B5%D0%BA%D1%81%D1%96%D0%B9_%D0%93%D1%80%D0%B8%D0%B3%D0%BE%D1%80%D0%BE%D0%B2%D0%B8%D1%87" target="_blank">Oleksiy Ivakhnenko</a> created the Group Method of Data Handling, which is a predecessor to Deep Learning <a href="https://people.idsia.ch/~juergen/DeepLearning2July2014.pdf" target="_blank">(source)</a>.</p>
        
        <p>The project's goal is to create the best model for Ukrainian language processing with open datasets for pretraining and instruction tuning.</p>
        
        <h3>Key Achievements</h3>
        
        <p><strong>Best tokenizer for the Ukrainian language</strong></p>
        
        <p>Thanks to a SOTA method for tokenizer adaptation developed by <a href="https://www.linkedin.com/in/mykola-haltiuk/" target="_blank">Mykola Haltiuk</a> as part of this project, it was possible to replace 80,000 tokens out of 250,000 with Ukrainian ones without loss of model quality, thus making Lapa LLM the fastest model for working with the Ukrainian language. Compared to the original Gemma 3, for working with Ukrainian, the model requires 1.5 times fewer tokens, thus performing three times fewer computations to achieve better results.</p>
        
        <p><strong>Most efficient instruction-tuned model on the market</strong></p>
        
        <p>Our instruction version of the model in some benchmark categories is only slightly behind the current leader — <a href="https://huggingface.co/spaces/INSAIT-Institute/mamaylm-v1-blog" target="_blank">MamayLM</a>. The team is actively working on new datasets to further improve benchmark scores, which we plan to surpass in the v1.0 model.</p>
        
        <h3>Benchmark Results</h3>
        
        <ul>
            <li>Best English-to-Ukrainian translator with a result of 33 BLEU on FLORES and vice versa, which allows for natural and cost-effective translation of new NLP datasets into Ukrainian</li>
            <li>One of the best models for image processing in Ukrainian in its size class, as measured on the MMZNO benchmark</li>
            <li>One of the best models for Summarization and Q&A, which means excellent performance for RAG</li>
            <li>Tests on propaganda and disinformation questions show the effectiveness of the filtering approach at the pretraining stage and during instruction fine-tuning</li>
        </ul>
        
        <p>Model measurements and comparisons will be published as part of the Ukrainian LLM Leaderboard project; subscribe to the Telegram channel for further news.</p>
        
        <p><strong>Leader in pretraining results</strong></p>
        
        <p>Lapa LLM demonstrates the best performance in pretraining benchmarks for Ukrainian language processing, which opens opportunities for use by other researchers to adapt for their own tasks.</p>
        
        <p>The model was trained on data evaluated by various quality assessment models - evaluation of propaganda and disinformation presence, readability, grammar assessment, etc. In the final stages of training, the model was trained on high-quality materials provided for commercial use by the Open Data division of Harvard Library.</p>
        
        <p><strong>Maximum openness and transparency</strong></p>
        
        <p>Unlike most available models, Lapa LLM is a maximally open project:</p>
        <ul>
            <li>The model is available for commercial use</li>
            <li>Approximately 25 datasets for model training have been published</li>
            <li>Methods for filtering and processing data are disclosed, including for detecting disinformation and propaganda</li>
            <li>Open source code for the model</li>
            <li>Documentation of the training process is available</li>
        </ul>
        
        <p>This openness allows for the development of the Ukrainian NLP community and helps businesses obtain a tool for the most efficient Ukrainian language processing in terms of both computation and results.</p>
        
        <h3>Application Possibilities</h3>
        
        <p>Lapa LLM opens wide possibilities for:</p>
        <ul>
            <li>Processing sensitive documents without transferring data to external servers</li>
            <li>Working with Ukrainian texts taking into account cultural and historical context without code-switching to Russian or other languages</li>
            <li>Building RAG systems and chatbots that write in proper Ukrainian</li>
            <li>Developing specialized solutions through the ability to fine-tune for specific tasks</li>
            <li>Machine translation with the best translation quality from English to Ukrainian and vice versa among all models, including API providers</li>
        </ul>
        
        <h3>Next Steps</h3>
        
        <ul>
            <li>Complete development of the reasoning model</li>
            <li>We are collecting community feedback on the model's performance, so we look forward to receiving it on GitHub or HuggingFace!</li>
            <li>Collecting additional datasets for image processing in Ukrainian</li>
            <li>Collecting additional datasets for instruction following and programming</li>
        </ul>
        
        <h3>Acknowledgment to Sponsors</h3>
        
        <p>The creation of Lapa LLM was made possible thanks to the support of our partners and sponsors, primarily the startup <strong>Comand.AI</strong>, which provided computational resources for training the model. We also want to thank the company <strong>ELEKS</strong>, which supported this project through a grant dedicated to the memory of Oleksiy Skrypnyk, and the startup <strong>HuggingFace</strong>, which provided a free corporate subscription to the team for storing models and datasets.</p>
        
        
        <h3>Team</h3>"""
    )
    
    # Load and inject external JavaScript
    def load_javascript():
        try:
            with open("static/script.js", "r", encoding="utf-8") as f:
                return f"<script>{f.read()}</script>"
        except FileNotFoundError:
            print("Warning: static/script.js not found")
            return ""
    
    gr.HTML(load_javascript())

if __name__ == "__main__":
    demo.queue().launch()