remove whisper_fastapi_online_server.py
Browse files- README.md +5 -5
- whisper_fastapi_online_server.py +0 -83
README.md
CHANGED
|
@@ -15,14 +15,14 @@
|
|
| 15 |
|
| 16 |
## π Overview
|
| 17 |
|
| 18 |
-
This project is based on [Whisper Streaming](https://github.com/ufal/whisper_streaming) and lets you transcribe audio directly from your browser. WhisperLiveKit provides a complete backend solution for real-time speech transcription with
|
| 19 |
|
| 20 |
### π Architecture
|
| 21 |
|
| 22 |
WhisperLiveKit consists of two main components:
|
| 23 |
|
| 24 |
- **Backend (Server)**: FastAPI WebSocket server that processes audio and provides real-time transcription
|
| 25 |
-
- **Frontend Example**: Basic HTML & JavaScript implementation
|
| 26 |
|
| 27 |
> **Note**: We recommend installing this library on the server/backend. For the frontend, you can use and adapt the provided HTML template from [whisperlivekit/web/live_transcription.html](https://github.com/QuentinFuxa/WhisperLiveKit/blob/main/whisperlivekit/web/live_transcription.html) for your specific use case.
|
| 28 |
|
|
@@ -33,13 +33,13 @@ WhisperLiveKit consists of two main components:
|
|
| 33 |
- **π Fully Local** - All processing happens on your machine - no data sent to external servers
|
| 34 |
- **π± Multi-User Support** - Handle multiple users simultaneously with a single backend/server
|
| 35 |
|
| 36 |
-
### βοΈ
|
| 37 |
|
|
|
|
| 38 |
- **Multi-User Support** β Handles multiple users simultaneously by decoupling backend and online ASR
|
|
|
|
| 39 |
- **MLX Whisper Backend** β Optimized for Apple Silicon for faster local processing
|
| 40 |
- **Buffering Preview** β Displays unvalidated transcription segments
|
| 41 |
-
- **Confidence Validation** β Immediately validate high-confidence tokens for faster inference
|
| 42 |
-
- **Apple Silicon Optimized** - MLX backend for faster local processing on Mac
|
| 43 |
|
| 44 |
## π Quick Start
|
| 45 |
|
|
|
|
| 15 |
|
| 16 |
## π Overview
|
| 17 |
|
| 18 |
+
This project is based on [Whisper Streaming](https://github.com/ufal/whisper_streaming) and lets you transcribe audio directly from your browser. WhisperLiveKit provides a complete backend solution for real-time speech transcription with a functional and simple frontend that you can customize for your own needs. Everything runs locally on your machine β¨
|
| 19 |
|
| 20 |
### π Architecture
|
| 21 |
|
| 22 |
WhisperLiveKit consists of two main components:
|
| 23 |
|
| 24 |
- **Backend (Server)**: FastAPI WebSocket server that processes audio and provides real-time transcription
|
| 25 |
+
- **Frontend Example**: Basic HTML & JavaScript implementation to capture and stream audio
|
| 26 |
|
| 27 |
> **Note**: We recommend installing this library on the server/backend. For the frontend, you can use and adapt the provided HTML template from [whisperlivekit/web/live_transcription.html](https://github.com/QuentinFuxa/WhisperLiveKit/blob/main/whisperlivekit/web/live_transcription.html) for your specific use case.
|
| 28 |
|
|
|
|
| 33 |
- **π Fully Local** - All processing happens on your machine - no data sent to external servers
|
| 34 |
- **π± Multi-User Support** - Handle multiple users simultaneously with a single backend/server
|
| 35 |
|
| 36 |
+
### βοΈ Core ifferences from [Whisper Streaming](https://github.com/ufal/whisper_streaming)
|
| 37 |
|
| 38 |
+
- **Automatic Silence Chunking** β Automatically chunks when no audio is detected to limit buffer size
|
| 39 |
- **Multi-User Support** β Handles multiple users simultaneously by decoupling backend and online ASR
|
| 40 |
+
- **Confidence Validation** β Immediately validate high-confidence tokens for faster inference
|
| 41 |
- **MLX Whisper Backend** β Optimized for Apple Silicon for faster local processing
|
| 42 |
- **Buffering Preview** β Displays unvalidated transcription segments
|
|
|
|
|
|
|
| 43 |
|
| 44 |
## π Quick Start
|
| 45 |
|
whisper_fastapi_online_server.py
DELETED
|
@@ -1,83 +0,0 @@
|
|
| 1 |
-
from contextlib import asynccontextmanager
|
| 2 |
-
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
| 3 |
-
from fastapi.responses import HTMLResponse
|
| 4 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 5 |
-
|
| 6 |
-
from whisperlivekit import WhisperLiveKit, parse_args
|
| 7 |
-
from whisperlivekit.audio_processor import AudioProcessor
|
| 8 |
-
|
| 9 |
-
import asyncio
|
| 10 |
-
import logging
|
| 11 |
-
import os
|
| 12 |
-
|
| 13 |
-
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 14 |
-
logging.getLogger().setLevel(logging.WARNING)
|
| 15 |
-
logger = logging.getLogger(__name__)
|
| 16 |
-
logger.setLevel(logging.DEBUG)
|
| 17 |
-
|
| 18 |
-
kit = None
|
| 19 |
-
|
| 20 |
-
@asynccontextmanager
|
| 21 |
-
async def lifespan(app: FastAPI):
|
| 22 |
-
global kit
|
| 23 |
-
kit = WhisperLiveKit()
|
| 24 |
-
yield
|
| 25 |
-
|
| 26 |
-
app = FastAPI(lifespan=lifespan)
|
| 27 |
-
app.add_middleware(
|
| 28 |
-
CORSMiddleware,
|
| 29 |
-
allow_origins=["*"],
|
| 30 |
-
allow_credentials=True,
|
| 31 |
-
allow_methods=["*"],
|
| 32 |
-
allow_headers=["*"],
|
| 33 |
-
)
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
@app.get("/")
|
| 37 |
-
async def get():
|
| 38 |
-
return HTMLResponse(kit.web_interface())
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
async def handle_websocket_results(websocket, results_generator):
|
| 42 |
-
"""Consumes results from the audio processor and sends them via WebSocket."""
|
| 43 |
-
try:
|
| 44 |
-
async for response in results_generator:
|
| 45 |
-
await websocket.send_json(response)
|
| 46 |
-
except Exception as e:
|
| 47 |
-
logger.warning(f"Error in WebSocket results handler: {e}")
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
@app.websocket("/asr")
|
| 51 |
-
async def websocket_endpoint(websocket: WebSocket):
|
| 52 |
-
audio_processor = AudioProcessor()
|
| 53 |
-
|
| 54 |
-
await websocket.accept()
|
| 55 |
-
logger.info("WebSocket connection opened.")
|
| 56 |
-
|
| 57 |
-
results_generator = await audio_processor.create_tasks()
|
| 58 |
-
websocket_task = asyncio.create_task(handle_websocket_results(websocket, results_generator))
|
| 59 |
-
|
| 60 |
-
try:
|
| 61 |
-
while True:
|
| 62 |
-
message = await websocket.receive_bytes()
|
| 63 |
-
await audio_processor.process_audio(message)
|
| 64 |
-
except WebSocketDisconnect:
|
| 65 |
-
logger.warning("WebSocket disconnected.")
|
| 66 |
-
finally:
|
| 67 |
-
websocket_task.cancel()
|
| 68 |
-
await audio_processor.cleanup()
|
| 69 |
-
logger.info("WebSocket endpoint cleaned up.")
|
| 70 |
-
|
| 71 |
-
if __name__ == "__main__":
|
| 72 |
-
import uvicorn
|
| 73 |
-
|
| 74 |
-
args = parse_args()
|
| 75 |
-
|
| 76 |
-
uvicorn.run(
|
| 77 |
-
"whisper_fastapi_online_server:app",
|
| 78 |
-
host=args.host,
|
| 79 |
-
port=args.port,
|
| 80 |
-
reload=False,
|
| 81 |
-
log_level="info",
|
| 82 |
-
lifespan="on",
|
| 83 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|