Merge branch 'main' into ayo-warmup-file
Browse files- README.md +39 -23
- whisper_online.py +132 -31
- whisper_online_server.py +3 -23
README.md
CHANGED
|
@@ -3,42 +3,50 @@ Whisper realtime streaming for long speech-to-text transcription and translation
|
|
| 3 |
|
| 4 |
**Turning Whisper into Real-Time Transcription System**
|
| 5 |
|
| 6 |
-
Demonstration paper, by Dominik Macháček, Raj Dabre, Ondřej Bojar, 2023
|
| 7 |
|
| 8 |
-
Abstract: Whisper is one of the recent state-of-the-art multilingual speech recognition and translation models, however, it is not designed for real
|
| 9 |
|
| 10 |
|
| 11 |
-
Paper
|
| 12 |
-
|
| 13 |
-
Demo video: https://player.vimeo.com/video/840442741
|
| 14 |
|
| 15 |
[Slides](http://ufallab.ms.mff.cuni.cz/~machacek/pre-prints/AACL23-2.11.2023-Turning-Whisper-oral.pdf) -- 15 minutes oral presentation at IJCNLP-AACL 2023
|
| 16 |
|
| 17 |
-
Please, cite us. [
|
| 18 |
|
| 19 |
```
|
| 20 |
-
@
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
}
|
| 30 |
```
|
| 31 |
|
| 32 |
## Installation
|
| 33 |
|
| 34 |
-
1) ``pip install librosa`` -- audio processing library
|
| 35 |
|
| 36 |
2) Whisper backend.
|
| 37 |
|
| 38 |
-
|
| 39 |
|
| 40 |
Alternative, less restrictive, but slower backend is [whisper-timestamped](https://github.com/linto-ai/whisper-timestamped): `pip install git+https://github.com/linto-ai/whisper-timestamped`
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
The backend is loaded only when chosen. The unused one does not have to be installed.
|
| 43 |
|
| 44 |
3) Optional, not recommended: sentence segmenter (aka sentence tokenizer)
|
|
@@ -69,7 +77,7 @@ In case of installation issues of opus-fast-mosestokenizer, especially on Window
|
|
| 69 |
|
| 70 |
```
|
| 71 |
usage: whisper_online.py [-h] [--min-chunk-size MIN_CHUNK_SIZE] [--model {tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large-v3,large}] [--model_cache_dir MODEL_CACHE_DIR] [--model_dir MODEL_DIR] [--lan LAN] [--task {transcribe,translate}]
|
| 72 |
-
[--backend {faster-whisper,whisper_timestamped}] [--vad] [--buffer_trimming {sentence,segment}] [--buffer_trimming_sec BUFFER_TRIMMING_SEC] [--start_at START_AT] [--offline] [--comp_unaware]
|
| 73 |
audio_path
|
| 74 |
|
| 75 |
positional arguments:
|
|
@@ -86,10 +94,10 @@ options:
|
|
| 86 |
--model_dir MODEL_DIR
|
| 87 |
Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.
|
| 88 |
--lan LAN, --language LAN
|
| 89 |
-
|
| 90 |
--task {transcribe,translate}
|
| 91 |
Transcribe or translate.
|
| 92 |
-
--backend {faster-whisper,whisper_timestamped}
|
| 93 |
Load only this backend for Whisper processing.
|
| 94 |
--vad Use VAD = voice activity detection, with the default parameters.
|
| 95 |
--buffer_trimming {sentence,segment}
|
|
@@ -147,7 +155,7 @@ The code whisper_online.py is nicely commented, read it as the full documentatio
|
|
| 147 |
|
| 148 |
This pseudocode describes the interface that we suggest for your implementation. You can implement any features that you need for your application.
|
| 149 |
|
| 150 |
-
```
|
| 151 |
from whisper_online import *
|
| 152 |
|
| 153 |
src_lan = "en" # source language
|
|
@@ -216,12 +224,20 @@ In more detail: we use the init prompt, we handle the inaccurate timestamps, we
|
|
| 216 |
re-process confirmed sentence prefixes and skip them, making sure they don't
|
| 217 |
overlap, and we limit the processing buffer window.
|
| 218 |
|
| 219 |
-
Contributions are welcome.
|
| 220 |
-
|
| 221 |
### Performance evaluation
|
| 222 |
|
| 223 |
[See the paper.](http://www.afnlp.org/conferences/ijcnlp2023/proceedings/main-demo/cdrom/pdf/2023.ijcnlp-demo.3.pdf)
|
| 224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
## Contact
|
| 227 |
|
|
|
|
| 3 |
|
| 4 |
**Turning Whisper into Real-Time Transcription System**
|
| 5 |
|
| 6 |
+
Demonstration paper, by [Dominik Macháček](https://ufal.mff.cuni.cz/dominik-machacek), [Raj Dabre](https://prajdabre.github.io/), [Ondřej Bojar](https://ufal.mff.cuni.cz/ondrej-bojar), 2023
|
| 7 |
|
| 8 |
+
Abstract: Whisper is one of the recent state-of-the-art multilingual speech recognition and translation models, however, it is not designed for real-time transcription. In this paper, we build on top of Whisper and create Whisper-Streaming, an implementation of real-time speech transcription and translation of Whisper-like models. Whisper-Streaming uses local agreement policy with self-adaptive latency to enable streaming transcription. We show that Whisper-Streaming achieves high quality and 3.3 seconds latency on unsegmented long-form speech transcription test set, and we demonstrate its robustness and practical usability as a component in live transcription service at a multilingual conference.
|
| 9 |
|
| 10 |
|
| 11 |
+
[Paper PDF](https://aclanthology.org/2023.ijcnlp-demo.3.pdf), [Demo video](https://player.vimeo.com/video/840442741)
|
|
|
|
|
|
|
| 12 |
|
| 13 |
[Slides](http://ufallab.ms.mff.cuni.cz/~machacek/pre-prints/AACL23-2.11.2023-Turning-Whisper-oral.pdf) -- 15 minutes oral presentation at IJCNLP-AACL 2023
|
| 14 |
|
| 15 |
+
Please, cite us. [ACL Anthology](https://aclanthology.org/2023.ijcnlp-demo.3/), [Bibtex citation](https://aclanthology.org/2023.ijcnlp-demo.3.bib):
|
| 16 |
|
| 17 |
```
|
| 18 |
+
@inproceedings{machacek-etal-2023-turning,
|
| 19 |
+
title = "Turning Whisper into Real-Time Transcription System",
|
| 20 |
+
author = "Mach{\'a}{\v{c}}ek, Dominik and
|
| 21 |
+
Dabre, Raj and
|
| 22 |
+
Bojar, Ond{\v{r}}ej",
|
| 23 |
+
editor = "Saha, Sriparna and
|
| 24 |
+
Sujaini, Herry",
|
| 25 |
+
booktitle = "Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics: System Demonstrations",
|
| 26 |
+
month = nov,
|
| 27 |
+
year = "2023",
|
| 28 |
+
address = "Bali, Indonesia",
|
| 29 |
+
publisher = "Association for Computational Linguistics",
|
| 30 |
+
url = "https://aclanthology.org/2023.ijcnlp-demo.3",
|
| 31 |
+
pages = "17--24",
|
| 32 |
}
|
| 33 |
```
|
| 34 |
|
| 35 |
## Installation
|
| 36 |
|
| 37 |
+
1) ``pip install librosa soundfile`` -- audio processing library
|
| 38 |
|
| 39 |
2) Whisper backend.
|
| 40 |
|
| 41 |
+
Several alternative backends are integrated. The most recommended one is [faster-whisper](https://github.com/guillaumekln/faster-whisper) with GPU support. Follow their instructions for NVIDIA libraries -- we succeeded with CUDNN 8.5.0 and CUDA 11.7. Install with `pip install faster-whisper`.
|
| 42 |
|
| 43 |
Alternative, less restrictive, but slower backend is [whisper-timestamped](https://github.com/linto-ai/whisper-timestamped): `pip install git+https://github.com/linto-ai/whisper-timestamped`
|
| 44 |
|
| 45 |
+
Thirdly, it's also possible to run this software from the [OpenAI Whisper API](https://platform.openai.com/docs/api-reference/audio/createTranscription). This solution is fast and requires no GPU, just a small VM will suffice, but you will need to pay OpenAI for api access. Also note that, since each audio fragment is processed multiple times, the [price](https://openai.com/pricing) will be higher than obvious from the pricing page, so keep an eye on costs while using. Setting a higher chunk-size will reduce costs significantly.
|
| 46 |
+
Install with: `pip install openai`
|
| 47 |
+
|
| 48 |
+
For running with the openai-api backend, make sure that your [OpenAI api key](https://platform.openai.com/api-keys) is set in the `OPENAI_API_KEY` environment variable. For example, before running, do: `export OPENAI_API_KEY=sk-xxx` with *sk-xxx* replaced with your api key.
|
| 49 |
+
|
| 50 |
The backend is loaded only when chosen. The unused one does not have to be installed.
|
| 51 |
|
| 52 |
3) Optional, not recommended: sentence segmenter (aka sentence tokenizer)
|
|
|
|
| 77 |
|
| 78 |
```
|
| 79 |
usage: whisper_online.py [-h] [--min-chunk-size MIN_CHUNK_SIZE] [--model {tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large-v3,large}] [--model_cache_dir MODEL_CACHE_DIR] [--model_dir MODEL_DIR] [--lan LAN] [--task {transcribe,translate}]
|
| 80 |
+
[--backend {faster-whisper,whisper_timestamped,openai-api}] [--vad] [--buffer_trimming {sentence,segment}] [--buffer_trimming_sec BUFFER_TRIMMING_SEC] [--start_at START_AT] [--offline] [--comp_unaware]
|
| 81 |
audio_path
|
| 82 |
|
| 83 |
positional arguments:
|
|
|
|
| 94 |
--model_dir MODEL_DIR
|
| 95 |
Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.
|
| 96 |
--lan LAN, --language LAN
|
| 97 |
+
Source language code, e.g. en,de,cs, or 'auto' for language detection.
|
| 98 |
--task {transcribe,translate}
|
| 99 |
Transcribe or translate.
|
| 100 |
+
--backend {faster-whisper,whisper_timestamped,openai-api}
|
| 101 |
Load only this backend for Whisper processing.
|
| 102 |
--vad Use VAD = voice activity detection, with the default parameters.
|
| 103 |
--buffer_trimming {sentence,segment}
|
|
|
|
| 155 |
|
| 156 |
This pseudocode describes the interface that we suggest for your implementation. You can implement any features that you need for your application.
|
| 157 |
|
| 158 |
+
```python
|
| 159 |
from whisper_online import *
|
| 160 |
|
| 161 |
src_lan = "en" # source language
|
|
|
|
| 224 |
re-process confirmed sentence prefixes and skip them, making sure they don't
|
| 225 |
overlap, and we limit the processing buffer window.
|
| 226 |
|
|
|
|
|
|
|
| 227 |
### Performance evaluation
|
| 228 |
|
| 229 |
[See the paper.](http://www.afnlp.org/conferences/ijcnlp2023/proceedings/main-demo/cdrom/pdf/2023.ijcnlp-demo.3.pdf)
|
| 230 |
|
| 231 |
+
### Contributions
|
| 232 |
+
|
| 233 |
+
Contributions are welcome. We acknowledge especially:
|
| 234 |
+
|
| 235 |
+
- [The GitHub contributors](https://github.com/ufal/whisper_streaming/graphs/contributors) for their pull requests with new features and bugfixes.
|
| 236 |
+
- [The translation of this repo into Chinese.](https://github.com/Gloridust/whisper_streaming_CN)
|
| 237 |
+
- [Ondřej Plátek](https://opla.cz/) for the paper pre-review.
|
| 238 |
+
- [Peter Polák](https://ufal.mff.cuni.cz/peter-polak) for the original idea.
|
| 239 |
+
- The UEDIN team of the [ELITR project](https://elitr.eu) for the original line_packet.py.
|
| 240 |
+
|
| 241 |
|
| 242 |
## Contact
|
| 243 |
|
whisper_online.py
CHANGED
|
@@ -4,12 +4,13 @@ import numpy as np
|
|
| 4 |
import librosa
|
| 5 |
from functools import lru_cache
|
| 6 |
import time
|
| 7 |
-
|
| 8 |
-
|
|
|
|
| 9 |
|
| 10 |
@lru_cache
|
| 11 |
def load_audio(fname):
|
| 12 |
-
a, _ = librosa.load(fname, sr=16000)
|
| 13 |
return a
|
| 14 |
|
| 15 |
def load_audio_chunk(fname, beg, end):
|
|
@@ -30,7 +31,10 @@ class ASRBase:
|
|
| 30 |
self.logfile = logfile
|
| 31 |
|
| 32 |
self.transcribe_kargs = {}
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
self.model = self.load_model(modelsize, cache_dir, model_dir)
|
| 36 |
|
|
@@ -54,6 +58,7 @@ class WhisperTimestampedASR(ASRBase):
|
|
| 54 |
|
| 55 |
def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
|
| 56 |
import whisper
|
|
|
|
| 57 |
from whisper_timestamped import transcribe_timestamped
|
| 58 |
self.transcribe_timestamped = transcribe_timestamped
|
| 59 |
if model_dir is not None:
|
|
@@ -118,8 +123,11 @@ class FasterWhisperASR(ASRBase):
|
|
| 118 |
return model
|
| 119 |
|
| 120 |
def transcribe(self, audio, init_prompt=""):
|
|
|
|
| 121 |
# tested: beam_size=5 is faster and better than 1 (on one 200 second document from En ESIC, min chunk 0.01)
|
| 122 |
segments, info = self.model.transcribe(audio, language=self.original_language, initial_prompt=init_prompt, beam_size=5, word_timestamps=True, condition_on_previous_text=True, **self.transcribe_kargs)
|
|
|
|
|
|
|
| 123 |
return list(segments)
|
| 124 |
|
| 125 |
def ts_words(self, segments):
|
|
@@ -142,6 +150,93 @@ class FasterWhisperASR(ASRBase):
|
|
| 142 |
self.transcribe_kargs["task"] = "translate"
|
| 143 |
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
class HypothesisBuffer:
|
| 147 |
|
|
@@ -234,9 +329,6 @@ class OnlineASRProcessor:
|
|
| 234 |
|
| 235 |
self.transcript_buffer = HypothesisBuffer(logfile=self.logfile)
|
| 236 |
self.commited = []
|
| 237 |
-
self.last_chunked_at = 0
|
| 238 |
-
|
| 239 |
-
self.silence_iters = 0
|
| 240 |
|
| 241 |
def insert_audio_chunk(self, audio):
|
| 242 |
self.audio_buffer = np.append(self.audio_buffer, audio)
|
|
@@ -246,7 +338,7 @@ class OnlineASRProcessor:
|
|
| 246 |
"context" is the commited text that is inside the audio buffer. It is transcribed again and skipped. It is returned only for debugging and logging reasons.
|
| 247 |
"""
|
| 248 |
k = max(0,len(self.commited)-1)
|
| 249 |
-
while k > 0 and self.commited[k-1][1] > self.
|
| 250 |
k -= 1
|
| 251 |
|
| 252 |
p = self.commited[:k]
|
|
@@ -357,7 +449,6 @@ class OnlineASRProcessor:
|
|
| 357 |
cut_seconds = time - self.buffer_time_offset
|
| 358 |
self.audio_buffer = self.audio_buffer[int(cut_seconds*self.SAMPLING_RATE):]
|
| 359 |
self.buffer_time_offset = time
|
| 360 |
-
self.last_chunked_at = time
|
| 361 |
|
| 362 |
def words_to_sentences(self, words):
|
| 363 |
"""Uses self.tokenizer for sentence segmentation of words.
|
|
@@ -451,13 +542,42 @@ def add_shared_args(parser):
|
|
| 451 |
parser.add_argument('--model', type=str, default='large-v2', choices="tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large-v3,large".split(","),help="Name size of the Whisper model to use (default: large-v2). The model is automatically downloaded from the model hub if not present in model cache dir.")
|
| 452 |
parser.add_argument('--model_cache_dir', type=str, default=None, help="Overriding the default model cache dir where models downloaded from the hub are saved")
|
| 453 |
parser.add_argument('--model_dir', type=str, default=None, help="Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.")
|
| 454 |
-
parser.add_argument('--lan', '--language', type=str, default='
|
| 455 |
parser.add_argument('--task', type=str, default='transcribe', choices=["transcribe","translate"],help="Transcribe or translate.")
|
| 456 |
-
parser.add_argument('--backend', type=str, default="faster-whisper", choices=["faster-whisper", "whisper_timestamped"],help='Load only this backend for Whisper processing.')
|
| 457 |
parser.add_argument('--vad', action="store_true", default=False, help='Use VAD = voice activity detection, with the default parameters.')
|
| 458 |
parser.add_argument('--buffer_trimming', type=str, default="segment", choices=["sentence", "segment"],help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.')
|
| 459 |
parser.add_argument('--buffer_trimming_sec', type=float, default=15, help='Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.')
|
| 460 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
## main:
|
| 462 |
|
| 463 |
if __name__ == "__main__":
|
|
@@ -485,33 +605,14 @@ if __name__ == "__main__":
|
|
| 485 |
duration = len(load_audio(audio_path))/SAMPLING_RATE
|
| 486 |
print("Audio duration is: %2.2f seconds" % duration, file=logfile)
|
| 487 |
|
| 488 |
-
|
| 489 |
language = args.lan
|
| 490 |
-
|
| 491 |
-
t = time.time()
|
| 492 |
-
print(f"Loading Whisper {size} model for {language}...",file=logfile,end=" ",flush=True)
|
| 493 |
-
|
| 494 |
-
if args.backend == "faster-whisper":
|
| 495 |
-
asr_cls = FasterWhisperASR
|
| 496 |
-
else:
|
| 497 |
-
asr_cls = WhisperTimestampedASR
|
| 498 |
-
|
| 499 |
-
asr = asr_cls(modelsize=size, lan=language, cache_dir=args.model_cache_dir, model_dir=args.model_dir)
|
| 500 |
-
|
| 501 |
if args.task == "translate":
|
| 502 |
asr.set_translate_task()
|
| 503 |
tgt_language = "en" # Whisper translates into English
|
| 504 |
else:
|
| 505 |
tgt_language = language # Whisper transcribes in this language
|
| 506 |
|
| 507 |
-
|
| 508 |
-
e = time.time()
|
| 509 |
-
print(f"done. It took {round(e-t,2)} seconds.",file=logfile)
|
| 510 |
-
|
| 511 |
-
if args.vad:
|
| 512 |
-
print("setting VAD filter",file=logfile)
|
| 513 |
-
asr.use_vad()
|
| 514 |
-
|
| 515 |
|
| 516 |
min_chunk = args.min_chunk_size
|
| 517 |
if args.buffer_trimming == "sentence":
|
|
|
|
| 4 |
import librosa
|
| 5 |
from functools import lru_cache
|
| 6 |
import time
|
| 7 |
+
import io
|
| 8 |
+
import soundfile as sf
|
| 9 |
+
import math
|
| 10 |
|
| 11 |
@lru_cache
|
| 12 |
def load_audio(fname):
|
| 13 |
+
a, _ = librosa.load(fname, sr=16000, dtype=np.float32)
|
| 14 |
return a
|
| 15 |
|
| 16 |
def load_audio_chunk(fname, beg, end):
|
|
|
|
| 31 |
self.logfile = logfile
|
| 32 |
|
| 33 |
self.transcribe_kargs = {}
|
| 34 |
+
if lan == "auto":
|
| 35 |
+
self.original_language = None
|
| 36 |
+
else:
|
| 37 |
+
self.original_language = lan
|
| 38 |
|
| 39 |
self.model = self.load_model(modelsize, cache_dir, model_dir)
|
| 40 |
|
|
|
|
| 58 |
|
| 59 |
def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
|
| 60 |
import whisper
|
| 61 |
+
import whisper_timestamped
|
| 62 |
from whisper_timestamped import transcribe_timestamped
|
| 63 |
self.transcribe_timestamped = transcribe_timestamped
|
| 64 |
if model_dir is not None:
|
|
|
|
| 123 |
return model
|
| 124 |
|
| 125 |
def transcribe(self, audio, init_prompt=""):
|
| 126 |
+
|
| 127 |
# tested: beam_size=5 is faster and better than 1 (on one 200 second document from En ESIC, min chunk 0.01)
|
| 128 |
segments, info = self.model.transcribe(audio, language=self.original_language, initial_prompt=init_prompt, beam_size=5, word_timestamps=True, condition_on_previous_text=True, **self.transcribe_kargs)
|
| 129 |
+
#print(info) # info contains language detection result
|
| 130 |
+
|
| 131 |
return list(segments)
|
| 132 |
|
| 133 |
def ts_words(self, segments):
|
|
|
|
| 150 |
self.transcribe_kargs["task"] = "translate"
|
| 151 |
|
| 152 |
|
| 153 |
+
class OpenaiApiASR(ASRBase):
|
| 154 |
+
"""Uses OpenAI's Whisper API for audio transcription."""
|
| 155 |
+
|
| 156 |
+
def __init__(self, lan=None, temperature=0, logfile=sys.stderr):
|
| 157 |
+
self.logfile = logfile
|
| 158 |
+
|
| 159 |
+
self.modelname = "whisper-1"
|
| 160 |
+
self.original_language = None if lan == "auto" else lan # ISO-639-1 language code
|
| 161 |
+
self.response_format = "verbose_json"
|
| 162 |
+
self.temperature = temperature
|
| 163 |
+
|
| 164 |
+
self.load_model()
|
| 165 |
+
|
| 166 |
+
self.use_vad_opt = False
|
| 167 |
+
|
| 168 |
+
# reset the task in set_translate_task
|
| 169 |
+
self.task = "transcribe"
|
| 170 |
+
|
| 171 |
+
def load_model(self, *args, **kwargs):
|
| 172 |
+
from openai import OpenAI
|
| 173 |
+
self.client = OpenAI()
|
| 174 |
+
|
| 175 |
+
self.transcribed_seconds = 0 # for logging how many seconds were processed by API, to know the cost
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def ts_words(self, segments):
|
| 179 |
+
no_speech_segments = []
|
| 180 |
+
if self.use_vad_opt:
|
| 181 |
+
for segment in segments.segments:
|
| 182 |
+
# TODO: threshold can be set from outside
|
| 183 |
+
if segment["no_speech_prob"] > 0.8:
|
| 184 |
+
no_speech_segments.append((segment.get("start"), segment.get("end")))
|
| 185 |
+
|
| 186 |
+
o = []
|
| 187 |
+
for word in segments.words:
|
| 188 |
+
start = word.get("start")
|
| 189 |
+
end = word.get("end")
|
| 190 |
+
if any(s[0] <= start <= s[1] for s in no_speech_segments):
|
| 191 |
+
# print("Skipping word", word.get("word"), "because it's in a no-speech segment")
|
| 192 |
+
continue
|
| 193 |
+
o.append((start, end, word.get("word")))
|
| 194 |
+
return o
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def segments_end_ts(self, res):
|
| 198 |
+
return [s["end"] for s in res.words]
|
| 199 |
+
|
| 200 |
+
def transcribe(self, audio_data, prompt=None, *args, **kwargs):
|
| 201 |
+
# Write the audio data to a buffer
|
| 202 |
+
buffer = io.BytesIO()
|
| 203 |
+
buffer.name = "temp.wav"
|
| 204 |
+
sf.write(buffer, audio_data, samplerate=16000, format='WAV', subtype='PCM_16')
|
| 205 |
+
buffer.seek(0) # Reset buffer's position to the beginning
|
| 206 |
+
|
| 207 |
+
self.transcribed_seconds += math.ceil(len(audio_data)/16000) # it rounds up to the whole seconds
|
| 208 |
+
|
| 209 |
+
params = {
|
| 210 |
+
"model": self.modelname,
|
| 211 |
+
"file": buffer,
|
| 212 |
+
"response_format": self.response_format,
|
| 213 |
+
"temperature": self.temperature,
|
| 214 |
+
"timestamp_granularities": ["word", "segment"]
|
| 215 |
+
}
|
| 216 |
+
if self.task != "translate" and self.original_language:
|
| 217 |
+
params["language"] = self.original_language
|
| 218 |
+
if prompt:
|
| 219 |
+
params["prompt"] = prompt
|
| 220 |
+
|
| 221 |
+
if self.task == "translate":
|
| 222 |
+
proc = self.client.audio.translations
|
| 223 |
+
else:
|
| 224 |
+
proc = self.client.audio.transcriptions
|
| 225 |
+
|
| 226 |
+
# Process transcription/translation
|
| 227 |
+
transcript = proc.create(**params)
|
| 228 |
+
print(f"OpenAI API processed accumulated {self.transcribed_seconds} seconds",file=self.logfile)
|
| 229 |
+
|
| 230 |
+
return transcript
|
| 231 |
+
|
| 232 |
+
def use_vad(self):
|
| 233 |
+
self.use_vad_opt = True
|
| 234 |
+
|
| 235 |
+
def set_translate_task(self):
|
| 236 |
+
self.task = "translate"
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
|
| 240 |
|
| 241 |
class HypothesisBuffer:
|
| 242 |
|
|
|
|
| 329 |
|
| 330 |
self.transcript_buffer = HypothesisBuffer(logfile=self.logfile)
|
| 331 |
self.commited = []
|
|
|
|
|
|
|
|
|
|
| 332 |
|
| 333 |
def insert_audio_chunk(self, audio):
|
| 334 |
self.audio_buffer = np.append(self.audio_buffer, audio)
|
|
|
|
| 338 |
"context" is the commited text that is inside the audio buffer. It is transcribed again and skipped. It is returned only for debugging and logging reasons.
|
| 339 |
"""
|
| 340 |
k = max(0,len(self.commited)-1)
|
| 341 |
+
while k > 0 and self.commited[k-1][1] > self.buffer_time_offset:
|
| 342 |
k -= 1
|
| 343 |
|
| 344 |
p = self.commited[:k]
|
|
|
|
| 449 |
cut_seconds = time - self.buffer_time_offset
|
| 450 |
self.audio_buffer = self.audio_buffer[int(cut_seconds*self.SAMPLING_RATE):]
|
| 451 |
self.buffer_time_offset = time
|
|
|
|
| 452 |
|
| 453 |
def words_to_sentences(self, words):
|
| 454 |
"""Uses self.tokenizer for sentence segmentation of words.
|
|
|
|
| 542 |
parser.add_argument('--model', type=str, default='large-v2', choices="tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large-v3,large".split(","),help="Name size of the Whisper model to use (default: large-v2). The model is automatically downloaded from the model hub if not present in model cache dir.")
|
| 543 |
parser.add_argument('--model_cache_dir', type=str, default=None, help="Overriding the default model cache dir where models downloaded from the hub are saved")
|
| 544 |
parser.add_argument('--model_dir', type=str, default=None, help="Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.")
|
| 545 |
+
parser.add_argument('--lan', '--language', type=str, default='auto', help="Source language code, e.g. en,de,cs, or 'auto' for language detection.")
|
| 546 |
parser.add_argument('--task', type=str, default='transcribe', choices=["transcribe","translate"],help="Transcribe or translate.")
|
| 547 |
+
parser.add_argument('--backend', type=str, default="faster-whisper", choices=["faster-whisper", "whisper_timestamped", "openai-api"],help='Load only this backend for Whisper processing.')
|
| 548 |
parser.add_argument('--vad', action="store_true", default=False, help='Use VAD = voice activity detection, with the default parameters.')
|
| 549 |
parser.add_argument('--buffer_trimming', type=str, default="segment", choices=["sentence", "segment"],help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.')
|
| 550 |
parser.add_argument('--buffer_trimming_sec', type=float, default=15, help='Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.')
|
| 551 |
|
| 552 |
+
def asr_factory(args, logfile=sys.stderr):
|
| 553 |
+
"""
|
| 554 |
+
Creates and configures an ASR instance based on the specified backend and arguments.
|
| 555 |
+
"""
|
| 556 |
+
backend = args.backend
|
| 557 |
+
if backend == "openai-api":
|
| 558 |
+
print("Using OpenAI API.", file=logfile)
|
| 559 |
+
asr = OpenaiApiASR(lan=args.lan)
|
| 560 |
+
else:
|
| 561 |
+
if backend == "faster-whisper":
|
| 562 |
+
asr_cls = FasterWhisperASR
|
| 563 |
+
else:
|
| 564 |
+
asr_cls = WhisperTimestampedASR
|
| 565 |
+
|
| 566 |
+
# Only for FasterWhisperASR and WhisperTimestampedASR
|
| 567 |
+
size = args.model
|
| 568 |
+
t = time.time()
|
| 569 |
+
print(f"Loading Whisper {size} model for {args.lan}...", file=logfile, end=" ", flush=True)
|
| 570 |
+
asr = asr_cls(modelsize=size, lan=args.lan, cache_dir=args.model_cache_dir, model_dir=args.model_dir)
|
| 571 |
+
e = time.time()
|
| 572 |
+
print(f"done. It took {round(e-t,2)} seconds.", file=logfile)
|
| 573 |
+
|
| 574 |
+
# Apply common configurations
|
| 575 |
+
if getattr(args, 'vad', False): # Checks if VAD argument is present and True
|
| 576 |
+
print("Setting VAD filter", file=logfile)
|
| 577 |
+
asr.use_vad()
|
| 578 |
+
|
| 579 |
+
return asr
|
| 580 |
+
|
| 581 |
## main:
|
| 582 |
|
| 583 |
if __name__ == "__main__":
|
|
|
|
| 605 |
duration = len(load_audio(audio_path))/SAMPLING_RATE
|
| 606 |
print("Audio duration is: %2.2f seconds" % duration, file=logfile)
|
| 607 |
|
| 608 |
+
asr = asr_factory(args, logfile=logfile)
|
| 609 |
language = args.lan
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 610 |
if args.task == "translate":
|
| 611 |
asr.set_translate_task()
|
| 612 |
tgt_language = "en" # Whisper translates into English
|
| 613 |
else:
|
| 614 |
tgt_language = language # Whisper transcribes in this language
|
| 615 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 616 |
|
| 617 |
min_chunk = args.min_chunk_size
|
| 618 |
if args.buffer_trimming == "sentence":
|
whisper_online_server.py
CHANGED
|
@@ -4,6 +4,7 @@ from whisper_online import *
|
|
| 4 |
import sys
|
| 5 |
import argparse
|
| 6 |
import os
|
|
|
|
| 7 |
parser = argparse.ArgumentParser()
|
| 8 |
|
| 9 |
# server options
|
|
@@ -25,34 +26,13 @@ SAMPLING_RATE = 16000
|
|
| 25 |
size = args.model
|
| 26 |
language = args.lan
|
| 27 |
|
| 28 |
-
|
| 29 |
-
print(f"Loading Whisper {size} model for {language}...",file=sys.stderr,end=" ",flush=True)
|
| 30 |
-
|
| 31 |
-
if args.backend == "faster-whisper":
|
| 32 |
-
from faster_whisper import WhisperModel
|
| 33 |
-
asr_cls = FasterWhisperASR
|
| 34 |
-
else:
|
| 35 |
-
import whisper
|
| 36 |
-
import whisper_timestamped
|
| 37 |
-
# from whisper_timestamped_model import WhisperTimestampedASR
|
| 38 |
-
asr_cls = WhisperTimestampedASR
|
| 39 |
-
|
| 40 |
-
asr = asr_cls(modelsize=size, lan=language, cache_dir=args.model_cache_dir, model_dir=args.model_dir)
|
| 41 |
-
|
| 42 |
if args.task == "translate":
|
| 43 |
asr.set_translate_task()
|
| 44 |
tgt_language = "en"
|
| 45 |
else:
|
| 46 |
tgt_language = language
|
| 47 |
|
| 48 |
-
e = time.time()
|
| 49 |
-
print(f"done. It took {round(e-t,2)} seconds.",file=sys.stderr)
|
| 50 |
-
|
| 51 |
-
if args.vad:
|
| 52 |
-
print("setting VAD filter",file=sys.stderr)
|
| 53 |
-
asr.use_vad()
|
| 54 |
-
|
| 55 |
-
|
| 56 |
min_chunk = args.min_chunk_size
|
| 57 |
|
| 58 |
if args.buffer_trimming == "sentence":
|
|
@@ -136,7 +116,7 @@ class ServerProcessor:
|
|
| 136 |
if not raw_bytes:
|
| 137 |
break
|
| 138 |
sf = soundfile.SoundFile(io.BytesIO(raw_bytes), channels=1,endian="LITTLE",samplerate=SAMPLING_RATE, subtype="PCM_16",format="RAW")
|
| 139 |
-
audio, _ = librosa.load(sf,sr=SAMPLING_RATE)
|
| 140 |
out.append(audio)
|
| 141 |
if not out:
|
| 142 |
return None
|
|
|
|
| 4 |
import sys
|
| 5 |
import argparse
|
| 6 |
import os
|
| 7 |
+
import numpy as np
|
| 8 |
parser = argparse.ArgumentParser()
|
| 9 |
|
| 10 |
# server options
|
|
|
|
| 26 |
size = args.model
|
| 27 |
language = args.lan
|
| 28 |
|
| 29 |
+
asr = asr_factory(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
if args.task == "translate":
|
| 31 |
asr.set_translate_task()
|
| 32 |
tgt_language = "en"
|
| 33 |
else:
|
| 34 |
tgt_language = language
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
min_chunk = args.min_chunk_size
|
| 37 |
|
| 38 |
if args.buffer_trimming == "sentence":
|
|
|
|
| 116 |
if not raw_bytes:
|
| 117 |
break
|
| 118 |
sf = soundfile.SoundFile(io.BytesIO(raw_bytes), channels=1,endian="LITTLE",samplerate=SAMPLING_RATE, subtype="PCM_16",format="RAW")
|
| 119 |
+
audio, _ = librosa.load(sf,sr=SAMPLING_RATE,dtype=np.float32)
|
| 120 |
out.append(audio)
|
| 121 |
if not out:
|
| 122 |
return None
|