Tijs Zwinkels
commited on
Commit
·
c30969f
1
Parent(s):
1f2352f
OpenAI Whisper API backend
Browse files- whisper_online.py +75 -1
- whisper_online_server.py +2 -0
whisper_online.py
CHANGED
|
@@ -4,6 +4,8 @@ import numpy as np
|
|
| 4 |
import librosa
|
| 5 |
from functools import lru_cache
|
| 6 |
import time
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
|
|
@@ -142,6 +144,76 @@ class FasterWhisperASR(ASRBase):
|
|
| 142 |
self.transcribe_kargs["task"] = "translate"
|
| 143 |
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
class HypothesisBuffer:
|
| 147 |
|
|
@@ -453,7 +525,7 @@ def add_shared_args(parser):
|
|
| 453 |
parser.add_argument('--model_dir', type=str, default=None, help="Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.")
|
| 454 |
parser.add_argument('--lan', '--language', type=str, default='en', help="Language code for transcription, e.g. en,de,cs.")
|
| 455 |
parser.add_argument('--task', type=str, default='transcribe', choices=["transcribe","translate"],help="Transcribe or translate.")
|
| 456 |
-
parser.add_argument('--backend', type=str, default="faster-whisper", choices=["faster-whisper", "whisper_timestamped"],help='Load only this backend for Whisper processing.')
|
| 457 |
parser.add_argument('--vad', action="store_true", default=False, help='Use VAD = voice activity detection, with the default parameters.')
|
| 458 |
parser.add_argument('--buffer_trimming', type=str, default="segment", choices=["sentence", "segment"],help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.')
|
| 459 |
parser.add_argument('--buffer_trimming_sec', type=float, default=15, help='Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.')
|
|
@@ -493,6 +565,8 @@ if __name__ == "__main__":
|
|
| 493 |
|
| 494 |
if args.backend == "faster-whisper":
|
| 495 |
asr_cls = FasterWhisperASR
|
|
|
|
|
|
|
| 496 |
else:
|
| 497 |
asr_cls = WhisperTimestampedASR
|
| 498 |
|
|
|
|
| 4 |
import librosa
|
| 5 |
from functools import lru_cache
|
| 6 |
import time
|
| 7 |
+
import io
|
| 8 |
+
import soundfile as sf
|
| 9 |
|
| 10 |
|
| 11 |
|
|
|
|
| 144 |
self.transcribe_kargs["task"] = "translate"
|
| 145 |
|
| 146 |
|
| 147 |
+
class OpenaiApiASR(ASRBase):
|
| 148 |
+
"""Uses OpenAI's Whisper API for audio transcription."""
|
| 149 |
+
|
| 150 |
+
def __init__(self, modelsize=None, lan=None, cache_dir=None, model_dir=None, response_format="verbose_json", temperature=0):
|
| 151 |
+
self.modelname = "whisper-1" # modelsize is not used but kept for interface consistency
|
| 152 |
+
self.language = lan # ISO-639-1 language code
|
| 153 |
+
self.response_format = response_format
|
| 154 |
+
self.temperature = temperature
|
| 155 |
+
self.model = self.load_model(modelsize, cache_dir, model_dir)
|
| 156 |
+
|
| 157 |
+
def load_model(self, *args, **kwargs):
|
| 158 |
+
from openai import OpenAI
|
| 159 |
+
self.client = OpenAI()
|
| 160 |
+
# Since we're using the OpenAI API, there's no model to load locally.
|
| 161 |
+
print("Model configuration is set to use the OpenAI Whisper API.")
|
| 162 |
+
|
| 163 |
+
def ts_words(self, segments):
|
| 164 |
+
o = []
|
| 165 |
+
for segment in segments:
|
| 166 |
+
# Skip segments containing no speech
|
| 167 |
+
if segment["no_speech_prob"] > 0.8:
|
| 168 |
+
continue
|
| 169 |
+
|
| 170 |
+
# Splitting the text into words and filtering out empty strings
|
| 171 |
+
words = [word.strip() for word in segment["text"].split() if word.strip()]
|
| 172 |
+
|
| 173 |
+
if not words:
|
| 174 |
+
continue
|
| 175 |
+
|
| 176 |
+
# Assign start and end times for each word
|
| 177 |
+
# We only have timestamps per segment, so interpolating start and end-times
|
| 178 |
+
# assuming equal duration per word
|
| 179 |
+
segment_duration = segment["end"] - segment["start"]
|
| 180 |
+
duration_per_word = segment_duration / len(words)
|
| 181 |
+
start_time = segment["start"]
|
| 182 |
+
for word in words:
|
| 183 |
+
end_time = start_time + duration_per_word
|
| 184 |
+
o.append((start_time, end_time, word))
|
| 185 |
+
start_time = end_time
|
| 186 |
+
|
| 187 |
+
return o
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
def segments_end_ts(self, res):
|
| 191 |
+
return [s["end"] for s in res]
|
| 192 |
+
|
| 193 |
+
def transcribe(self, audio_data, prompt=None, *args, **kwargs):
|
| 194 |
+
# Write the audio data to a buffer
|
| 195 |
+
buffer = io.BytesIO()
|
| 196 |
+
buffer.name = "temp.wav"
|
| 197 |
+
sf.write(buffer, audio_data, samplerate=16000, format='WAV', subtype='PCM_16')
|
| 198 |
+
buffer.seek(0) # Reset buffer's position to the beginning
|
| 199 |
+
|
| 200 |
+
# Prepare transcription parameters
|
| 201 |
+
transcription_params = {
|
| 202 |
+
"model": self.modelname,
|
| 203 |
+
"file": buffer,
|
| 204 |
+
"response_format": self.response_format,
|
| 205 |
+
"temperature": self.temperature
|
| 206 |
+
}
|
| 207 |
+
if self.language:
|
| 208 |
+
transcription_params["language"] = self.language
|
| 209 |
+
if prompt:
|
| 210 |
+
transcription_params["prompt"] = prompt
|
| 211 |
+
|
| 212 |
+
# Perform the transcription
|
| 213 |
+
transcript = self.client.audio.transcriptions.create(**transcription_params)
|
| 214 |
+
|
| 215 |
+
return transcript.segments
|
| 216 |
+
|
| 217 |
|
| 218 |
class HypothesisBuffer:
|
| 219 |
|
|
|
|
| 525 |
parser.add_argument('--model_dir', type=str, default=None, help="Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.")
|
| 526 |
parser.add_argument('--lan', '--language', type=str, default='en', help="Language code for transcription, e.g. en,de,cs.")
|
| 527 |
parser.add_argument('--task', type=str, default='transcribe', choices=["transcribe","translate"],help="Transcribe or translate.")
|
| 528 |
+
parser.add_argument('--backend', type=str, default="faster-whisper", choices=["faster-whisper", "whisper_timestamped", "openai-api"],help='Load only this backend for Whisper processing.')
|
| 529 |
parser.add_argument('--vad', action="store_true", default=False, help='Use VAD = voice activity detection, with the default parameters.')
|
| 530 |
parser.add_argument('--buffer_trimming', type=str, default="segment", choices=["sentence", "segment"],help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.')
|
| 531 |
parser.add_argument('--buffer_trimming_sec', type=float, default=15, help='Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.')
|
|
|
|
| 565 |
|
| 566 |
if args.backend == "faster-whisper":
|
| 567 |
asr_cls = FasterWhisperASR
|
| 568 |
+
elif args.backend == "openai-api":
|
| 569 |
+
asr_cls = OpenaiApiASR
|
| 570 |
else:
|
| 571 |
asr_cls = WhisperTimestampedASR
|
| 572 |
|
whisper_online_server.py
CHANGED
|
@@ -29,6 +29,8 @@ print(f"Loading Whisper {size} model for {language}...",file=sys.stderr,end=" ",
|
|
| 29 |
if args.backend == "faster-whisper":
|
| 30 |
from faster_whisper import WhisperModel
|
| 31 |
asr_cls = FasterWhisperASR
|
|
|
|
|
|
|
| 32 |
else:
|
| 33 |
import whisper
|
| 34 |
import whisper_timestamped
|
|
|
|
| 29 |
if args.backend == "faster-whisper":
|
| 30 |
from faster_whisper import WhisperModel
|
| 31 |
asr_cls = FasterWhisperASR
|
| 32 |
+
elif args.backend == "openai-api":
|
| 33 |
+
asr_cls = OpenaiApiASR
|
| 34 |
else:
|
| 35 |
import whisper
|
| 36 |
import whisper_timestamped
|